

Interacting Decentralized
Transactional and Ledger
Architecture for Mutual Credit

WP4

Iterative Component and Field Testing

Deliverable D4.1

Report on Component Testing

Project funded by the European Commission
Information and Communication Technologies

FET OPEN Launchpad Project
Grant no. 754494

INTERLACE Project (Grant no. 754494)

D4.1 2

Contract Number: 754494

Project Acronym: INTERLACE

Deliverable No: D4.1

Due Date: 30/04/2018

Delivery Date: 22/01/2019

Author: Giuseppe Littera (SARDEX), Paolo Dini (UH), Eduard Hirsch (SUAS)

Partners contributed:

Made available to: Public

Versioning

Version Date Name, organization

1 16/11/2018 Paolo Dini (UH)

2 07/01/2019 Giuseppe Littera (SARDE), Paolo Dini (UH), Eduard Hirsch (SUAS)

3 22/01/2019 Paolo Dini (UH), Eduard Hirsch (SUAS)

Internal Reviewer: Maria Luisa Mulas (SARDEX), Egon Börger (UNI PASSAU)

This work is licensed under a
Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Abstract

This deliverable is a stub. The project ran out of time and funds before we reached the final
workpackage on testing. In this short report we only mention what the next steps, funded with
own resources, are likely to be.

Table of Contents

1 Synthesis 5

References 6

4

Chapter 1

Synthesis

Giuseppe Littera, Eduard Hirsch and Paolo Dini

The component testing of the platform was performed only at an essential level, as reported in
deliverable D3.2 [4], due to lack of time and funding. Although the CoreASIM model and the blockchain
implementation both performed as required according to the basic tests, we did not have time or
resources to develop a production-level framework to test the components of the system formally and
in an automated way against the requirements.

Over the next year we will investigate how Cucumber,1 together with other testing methods, can be
utilised to achieve a test plan which can be executed transparently and repeatedly. Cucumber is a tool
which supports Behaviour-Driven Development (BDD [5]), which can be seen as an advancement
relative to plain Test-Driven Development (TDD [1]) that adds “Deliberate Discovery” to the
process. Deliberate Discovery can be summarized by the aim to “deliberately seek and discover
what development teams are ignorant about before implementations starts”. This goal/intention is
very similar to the AS(I)M approach taken by INTERLACE, in other words the aim to get the
implementation details right and clear for everyone.

In spite of some similarities, AS(I)Ms and Cucumber achieve this goal in rather different ways. Whereas
AS(I)Ms rely on a very rigorous mathematical approach, Cucumber uses a natural language approach
called Gherkin2 connected with actual test implementations (in various languages3). The aim of
the work will be to combine such methods with the AS(I)M approach, thereby giving the strict
mathematical definitions a connection to broadly accessible and understandable terms which can
easily be verified by both (non-)technical readers as well as by automated tests. This more immediate
development of component testing will be performed with own funds as a collaborative effort between
SARDEX, SUAS, UH, and the open source community at large. We expect the component testing
to be completed sometime in 2019. All updates will be shared on GitHub4 and/or on the project’s
website.5

An interesting possible future PhD-level research project could be to investigate the feasibility of
developing an ASIM-to-Gherkin compiler in order to run acceptance tests with Cucumber directly
from the ASIM model implementation. If feasible, it could ultimately be integrated in the CoreASIM
framework. The motivation is that although ASIMs are mathematically rigorous they are completely
flexible in how the universe of terms of a given model is defined. In fact, the standard ASM practice
is to use natural language-like expressions to model any system [3, 2]. Since also Gherkin is flexible
in its use of natural language expressions, it should be in principle possible to tailor ASIMs to the
Gherkin/Cucumber test logic and natural language properties. A compiler that maps the specification
logic to Gherkin would then achieve the best of both worlds: both mathematical rigour and human
readibility at the specification, modelling, and testing phases.

1 https://docs.cucumber.io/
2 https://docs.cucumber.io/gherkin/
3 Java Example: https://docs.cucumber.io/guides/10-minute-tutorial/#see-scenario-reported-as-undefined
4 https://github.com/InterlaceProject/InterlaceBlockchain
5 https://www.interlaceproject.eu/

https://docs.cucumber.io/
https://docs.cucumber.io/gherkin/
https://docs.cucumber.io/guides/10-minute-tutorial/#see-scenario-reported-as-undefined
https://github.com/InterlaceProject/InterlaceBlockchain
https://www.interlaceproject.eu/

References

1. Kent Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.
2. E Börger and A Raschke. Modeling Companion for Software Practitioners. New York: Springer-Verlag, 2018.
3. E Börger and R Stärk. Abstract State Machines: A Method for High-Level System Design and Analysis. New York:

Springer-Verlag, 2003.
4. E Hirsch, T Heistracher, P Dini, E Börger, L Carboni, M L Mulas, and G Littera. D3.2: Final Demonstrator

Implementation. INTERLACE Deliverable, European Commission, 2018. URL: https://www.interlaceproject.
eu/.

5. Matt Wynne, Aslak Hellesoy, and Steve Tooke. The cucumber book: behaviour-driven development for testers and
developers. Pragmatic Bookshelf, 2017.

https://www.interlaceproject.eu/
https://www.interlaceproject.eu/

	Synthesis
	References

