

Interacting Decentralized
Transactional and Ledger
Architecture for Mutual Credit

WP3

Iterative Demonstrator Implementation

Deliverable D3.2

Final Demonstrator Implementation

Project funded by the European Commission
Information and Communication Technologies

FET OPEN Launchpad Project
Grant no. 754494

INTERLACE Project (Grant no. 754494)

D3.2 2

Contract Number: 754494

Project Acronym: INTERLACE

Deliverable No: D3.2

Due Date: 31/10/2018

Delivery Date: 31/12/2018

Author: Eduard Hirsch (SUAS), Paolo Dini (UH), and Maria Luisa Mulas (SARDEX)

Partners contributed: Giuseppe Littera, Luca Carboni (SARDEX)

Made available to: Public

Versioning

Version Date Name, organization

1 08/10/2018 Paolo Dini (UH)

2 31/10/2018 Eduard Hirsch (SUAS)

3 31/12/2018 Eduard Hirsch (SUAS), Paolo Dini (UH)

Internal Reviewer: Paolo Dini (UH)

This work is licensed under a
Creative Commons

Attribution-NonCommercial-ShareAlike 4.0 Unported License.

Abstract

This report describes the Hyperledger implementation of a part of the specification of
the INTERLACE transactional platform as detailed in deliverable D3.1: Requirements and
Architecture Definition, as well as mechanisms used to ensure a stable and shared runtime
environment and to guarantee testability and easy execution of the ASIM model of the
business logic. The implementation is based on a refinement of the requirements that is
detailed in D3.1, along with an updated formal specification, relative to the original ASIM
definitions of D2.1, that can be found in D2.3: Final Architecture. Finally, a presentation
of the runtime environment is given and discussed in the context of the future connection
to the blockchain-based backend.

Table of Contents

1 Introduction 5
1.1 Objectives and Motivation . 5
1.2 Scope and Organization . 5

2 Design Discussion 6
2.1 ASIM and blockchain . 6

2.1.1 From Servers to Agents and Peers . 6
2.1.2 Testing . 8

2.2 Solution Technologies . 9

3 Prototypical Implementation 11
3.1 Project Structure . 11
3.2 Architecture . 12

3.2.1 Sardex Network . 12
3.2.2 Hyperledger Fabric Network . 12
3.2.3 Network Configuration Files . 14

3.3 Prototype . 17
3.3.1 Install . 18
3.3.2 Working with the environment . 20

3.4 The Chaincode . 25
3.4.1 Linking Transactions . 26
3.4.2 Init Blockchain . 27
3.4.3 Main Payment Transactions . 28
3.4.4 Additional Transactions . 31
3.4.5 Queries . 32
3.4.6 Access Control Language File . 33
3.4.7 Deployment . 33

3.5 REST Server . 34
3.6 Web Application . 35

4 Conclusion and Final Thoughts 37
4.1 Best Practices, Falsey Values and Pitfalls . 37

4.1.1 Deterministic Execution . 37
4.1.2 Network Upgrade . 39
4.1.3 Hyperledger Composer Specifics . 40

4.2 Identity Management . 40
4.3 Future Scenarios . 41
4.4 Final Review and Open Points . 42

4.4.1 Open Points . 42

References 43

4

Chapter 1

Introduction

Eduard Hirsch

1.1 Objectives and Motivation

During the INTERLACE project, requirements for the transactional platform of an interest-free
mutual credit system were collected and documented in deliverables D2.1[3] and D3.1[8]. The
requirements were formulated precisely using “Abstracts State Interaction Machines" (ASIMs).
These ASIM specifications were used to create a working ICEF implementation,1 which also has
been described in D3.1.

The focus of the present report is on the creation of a working prototype that provides
basic payment capabilities, thereby enabling a scalable implementation of a distributed ledger
technology (DLT).

1.2 Scope and Organization

This report provides insights into the prototype created. It discusses the technologies used and
provides feedback on how they have been applied in order to achieve a working implementation
capable of accepting basic transfers.

Further, information is given on how the system can be installed and used for paying. The system
can therefore be used to prove and test various use cases in order to understand the chosen DLT
approach.

For production systems, which might be built upon the INTERLACE prototype, important features
are discussed that need to be handled during the realisation of such a payment system. Thus
the transition from a client-server to a p2p-based model together with possible challenges are
described and example approaches explained.

Finally, an outlook is given which elaborates possible scenarios that may be applied in a
production context.

1 http://biomicsproject.eu/news/135-icef.html
https://github.com/InterlaceProject/icef

http://biomicsproject.eu/news/135-icef.html
https://github.com/InterlaceProject/icef

Chapter 2

Design Discussion

Eduard Hirsch and Paolo Dini

2.1 ASIM and blockchain

Creating a scalable distributed application is a big challenge. Even more so when monolithic
legacy systems need to be addressed as in the case of the Sardex payment system, partly realised
in Sardinia. For INTERLACE this meant dealing with a system which is currently stable and
working reliably. One of the drawbacks of this system, however, is that it does not scale well,
which has become increasingly evident in recent times. This problem has become increasingly
evident as more circuits from other parts of Italy have been added to the database.

This report describes a prototypical solution of how distribution and scalability are handled
using technologies that allow a mutual credit system to grow and evolve. More specifically, for
INTERLACE a well-tested architectural, specification, and modelling process was introduced,
the Abstract States (Interaction) Machines paradigm [2], which uses a distributed computational
model that allows for iterative refinement of different concurrent and communicating system
components in a very specific and detailed way.

As described in [3], an ASIM definition was developed which acts as a ground model for the
INTERLACE prototype. This paper-based definition was then transformed into executable code
realised with the ICEF,2 which is based on ASM language primitives [2]. The implementation,
which is the main focus of this report, is the last step before testing, which needs to be done on
various levels (component and field testing).

In the following subsections the various topics and challenges encountered during the planning
and the definition of the new blockchain-based system are addressed.

2.1.1 From Servers to Agents and Peers

INTERLACE encourages not just a change in technology but also an architectural culture change.
Currently many systems in industry are based on monolithic approaches which are stable and
based on commonly known and widely adopted implementation strategies. Often not even based
on multiple tiers, such classic strategies suit the needs of small and middle-sized projects but
come at high cost for very large application services and their providers. When increasing in size
they become increasingly difficult to manage given

their large code base,

non-autonomous teams,

lack in agility,

difficult deployments and

high commitment to specific technologies or even worse vendor lock-ins.

2 Interaction Computing Execution Framework

INTERLACE Project (Grant no. 754494) 7

Modern large-scale architectures, therefore, aim to find different possibilities in the field of SOA3,
and when advancing further also in Micro Services Architectures (MSAs). In particular, MSAs [9]
claim to solve these problems by providing simple and easy-to-build applications at the expense
of higher network load and more difficult system integration.

However, as mentioned above INTERLACE favours a different solution which has similar ideas
but is in some of its most fundamental aspects very different; namely, the blockchain. Although
the blockchain, like MSA, has a highly distributed nature, MSA is mainly an architectural stile
whereas most blockchains are based on a data-centric approach and are quite specific in terms of
scenarios of use. In addition, as discussed more fully in D2.2 [4], permissionless blockchain are
also decentralised, which generally refers to a distribution of control in addition to a distribution
of the computation. Although in this report we discussed the Hyperledger blockchain, which is
permissioned, Hyperledger also has an interface to Ethereum, which is permissionless and which
could be a useful addition to the Sardex/INTERLACE platform for example to record currency
exchange transactions between circuits in different parts of the world that are pegged 1-1 to
different fiat currencies. Finally, in the future an interface to Holochain, which is agent-centric
and not data-centric, could also become relevant and useful [4, 5].

As discussed more fully in [4], desirable properties of blockchain technologies for INTERLACE
are:

Distribution
Peer to Peer communication
Immutable⇒ auditable
Data storage
Virtual Machine-like executions of code (chaincode or Smart Contracts)

Further, the use of Smart Contracts or chaincode (Hyperledger Fabric nomenclature) comes with
various other attributes which are important to manage a mutual credit system. Code executions
which run “on chain” are executed on every peer in the network. In order to be executed correctly
a blockchain framework defines the roles of various system components, the state of the chain,
and the code which is attached to a transaction and takes care of the business logic. The whole
framework results in a workflow whose main steps are recorded and written to the blockchain.

Because the technology currently used by Sardex is mainly monolithic, it would be extremely
difficult and risky to set up a complete distributed blockchain environment and swap systems
from one day to the next. Rather, a roadmap to a completely distributed scenario is being
planned, keeping in mind that the code base cannot be changed all at once. In fact, some of the
functions of the original system are gradually being reimplemented as external microservices
such as, for example, Search. Risk refers to the fact that the non-functional requirements of
most blockchain frameworks are still evolving as the technology itself undergoes a continuous
process of innovation. In addition, risk also refers to the continuous evolution and innovation that
the business model of Sardex itself undergoes. Since blockchains are quite different application
platforms which carry certain implications for how users should interact with the software
product, any changes in the underlying framework or in the business/application layer need to
be introduced gradually and carefully.

Consequently, the INTERLACE focus has been on understanding the complete core requirements,
facilitating the AS(I)M approach, creating a generic model, and as much as possible remaining
independent of the underlying technology used, in order to make the transition towards a fully

3 Service-Oriented Architecture [6]

8 D3.1

distributed, scalable, and reliable system clearer and with minimum risk. For INTERLACE this
meant, further, that the agent-based ASIM methodology was used to specify a client-server model
to create a Hyperledger Composer-based implementation.

The Hyperledger Composer business network is a blockchain architecture that also incorporates
a Micro Services Architecture. Although this is not yet a fully distributed or decentralised
scenario, it is scalable because new nodes can be added when extending to other circuits and
the transaction processing load can be balanced between them. The permissioned Hyperledger
architecture, therefore, allows better control of the blockchain functionalities and the enforce-
ment of rules (business or otherwise), which would otherwise be very difficult or impossible to
impose in a permissionless, public chain.

2.1.2 Testing

This subsection gives a quick overview of how testing may be processed for the prototype as well
as for the final product. Detailed testing and a description of the testing activities will be reported
in D4.1 and D4.2, which will be completed after the end of the project.

There are several levels of testing that need to take place. Since the requirements were defined in
the ASIM language and were translated into an ICEF/coreASIM implementation, the test should
take this intermediate implementation into account to verify the correctedness system. This,
in fact, is integral to the iterative refinement process of the ASM methodology [2]. Traditional
approaches like the v-model [7] usually test on four levels:

Acceptance Testing

System Testing

Integration Testing

Unit Testing

ASIM ground model testing cannot be put into one of these categories directly. Further, under
the umbrella of modern software development methods like (large-scale) scrum, (scaled) agile
different testing practices have been adopted besides the traditional approaches.

For D4.1/2 it is planned to test based on the results of the execution of the ASIM Models. Thus,
each of the requirements has a specific output, which is then compared to the log of an execution
produced by the new system. This is of course a pretty high-level way of testing. Compared to
traditional testing it may be seen to lie between Integration and System Testing, but not properly
in the realm of acceptance testing since the requirements defined by ASIMs are mathematically-
based algorithms which are difficult to read and to verify by non-technical people.

Cucumber4 may be used as a potential replacement tool for the ASIM comparison testing.
Cucumber is a scenario-based testing tool which combines functional requirements into high-
level system tests which are described as text as well as with a domain-specific language that
enables the exectution of the test. A testing scenario may look like the one shown in Listing 2.1.

4 https://cucumber.io

https://cucumber.io

INTERLACE Project (Grant no. 754494) 9

1 Feature: Perform Credit operations
2 Move money from an account of member A to an account of member B
3
4 Scenario: account B receives 100 Sardex from account A
5 Given: Account A has a positive balance
6 And: Account B is able to receive money
7 And: Account A has a balance of 100
8 And: Account B has a balance of 0
9 When: Credit Transaction has performed successfully

10 Then: account A has a balance of 0
11 And: account B has a balance of 100

Listing 2.1: Cucumber test example

The various steps Given [initial context], When [event occurs], Then [ensure some outcomes]
are based on a special language called Gherkin5 whose elements can be connected to test
implementations serving that scenario. Details can be found in the publicly available Cucumber
documentation.

2.2 Solution Technologies

This last introductory part finally presents the planned solution stack which will be utilised for
the prototypical implementation and is illustrated in Figure 2.1. Details on how these components
work together are explained in depth in Section 3.

Ubuntu 16.04 LTS

REST Server
(Swagger)

Hyperledger Fabric – Blockchain Base

Cucumber Testing

Web GUI
Angular

Passport.js

Docker Runtime
Web Server

Node.js

Vagrant Virtualization (optional)

Peer 1..n Orderer CA
Hyperledger Composer

Mangement

Command Line Tools

Hyperledger Composer

Fig. 2.1: Technologies involved for the final solution stack

Although detailed explanation will be given in Section 3, a simple structure introduction is given
here.

5 https://docs.cucumber.io/gherkin

https://docs.cucumber.io/gherkin

10 D3.1

The whole system currently runs on Ubuntu Version 16.04 LTS as Hyperledger Fabric together
with Composer work properly only on the MacOs or Linux operating systems. Thus, optionally,
a possibility exists which includes virtualizsation. On GitHub6 a Vagrant-assisted Hyper-V or
VirtualBox Machine may be started providing an Ubuntu 16.04 ecosystem, which is also explained
in the next section.

On top of Ubuntu a Docker runtime hosts a Hyperledger Fabric docker-compose cluster which
runs one to n peers, an Orderer, and a Certification Authority (CA), as well as managing a
container which handles the Hyperledger Composer-specific part.

This base Fabric environment is managed by the Composer wrapper framework, which forms
the key access port for the other components and provides help during implementation and the
setting up of a business network.

Next, the Composer API provides stubs for the REST Server and the Web Server implementations,
which really simplifies the programming necessary. These servers can be used to first load the
application and connect it to the business network, and then execute various transactions/trans-
fers. The Web Application is implemented using AngularJS and may be secured using Passport.js,
which is an authentication middleware.

Finally, on top of the whole stack, Cucumber tests can be used to verify simple scenarios.

6 https://github.com/hirsche/hyperledger

https://github.com/hirsche/hyperledger

Chapter 3

Prototypical Implementation

Eduard Hirsch

3.1 Project Structure

Before introducing the actual architecture and implementation, the structure of the project is
described in order to know what to find where. In Figure 3.1 the main directories are shown
which also separate the main components of the business network.

Interlace Blockchain
chain
fabric
webapp

Fig. 3.1: Project Directory Structure

Explaining further, the folder "chain" contains a Hyperledger Composer implementation of a
business network. This business network is the main implementation of the INTERLACE work
to create a working blockchain that consists mainly of chaincode7 implementations, but also of
scripts to deploy and update the chaincode as well as to make the network accessible by starting
it on the Hyperledger Fabric chain.

Hyperledger Composer aims to make blockchain application development easier by offering a
large toolset together with a powerful framework. Its main purpose is to accelerate the time
needed between requirements gathering and a final blockchain application, delivering fully
functional business applications. Composer facilitates JavaScript and node.js in combination with
proprietary language extensions to generate such business application and to run them on a
Hyperledger Fabric instance.

"fabric" is the Hyperledger Fabric base blockchain needed for running a business network where
the chaincode bits are executed on. The chaincode bits from directory chain are compiled to a
.bna file (“blockchain network archive”) which is then deployed to a Fabric network. These bna-
files (also called banana files) can’t be used by default by Hyperledger Fabric. They are, rather,
part of a virtual infrastructure-like environment provided by Hyperledger Composer. Thus the
API components of Composer provide wrappers to make a Composer implementation run on a
pure Fabric network.

Finally a web application has been implemented which uses AngularJS, a front-end framework
provided by Google, to work with the blockchain. This application is found in webapp. This appli-
cation uses a Swagger8-based REST-server implementation which comes with the Hyperledger
Composer framework.

A more detailed description of the directory structures can be found in subsequent sections where
the respective parts are explained in depth.

7 In the Hyperledger framework the language of Smart Contracts is referred to as ‘chaincode’.
8 https://swagger.io/

https://swagger.io/

12 D3.1

3.2 Architecture

The core architecture of the INTERLACE project presented next is multi-layered and concen-
trates on being scalable and highly distributable, in contrast to the current monolithic payment
platform used by Sardex.

The chosen blockchain approach is going to be explained in detail. The technical challenges
during the planning of that implementation strategies are discussed in subsequent sections of
this chapter.

3.2.1 Sardex Network

In deliverables D2.1 and D3.1 the current architecture was specified using the AS(I)M approach
and, as mentioned before, a working client-server application based on message passing was
developed. This application was realized using the ICEF-framework which is founded on abstract
state machines applying a programming language similar to ASM logic definitions.

The high-level functional model of D2.1 and D3.1 was used to derive a new payment network
based on the blockchain approach. The new network platform involves using a publicly
maintained and an easy-to-use blockchain which supports the principle of an interest-free
mutual credit system enabling account-based balances rather than token-based (asset-based)
currencies only. These considerations led to a prototypical implementation using Hyperledger
Fabric together with Hyperledger Composer.

Independent of the choice of blockchain environment, it was also important to develop a
central payment network which is not only reliable and verifiable but also (to a specific
extent) controllable in order to impose the basic Sardex payment rules on it. Thus, the first
implementation of the INTERLACE blockchain is actually centralised. The advantage is easy
scalability to a distributed architecture as more circuits are added in other parts of Italy and
beyond.

3.2.2 Hyperledger Fabric Network

The given network constraints were used while creating a new Hyperledger Fabric network which
sets up a core environment offering a basic blockchain to interact with. Next, we discuss in some
detail the actual implemented network along with a description for the various parts.

Figure 3.2 shows the current working environment, which uses the possibilities offered by
Hyperledger Fabric. Upon closer scrutiny, Fabric actually imposes a structure on a newly created
network, of which the following main components can be singled out for INTERLACE:

Sardex as participating organisation
– One peer (named: peer0.sardex.sardex.net)
– Clients and Services connecting to the network
– Sardex Membership Provider (MSP) with ID SardexMSP
"Interlace" pseudo organisation
– An orderer (named: orderer.sardex.net)
– Interlace Membership Provider (MSP) with ID InterlaceOrdererMSP
Certification Authority (CA)

Starting from a CA, a user may issue a unique identity which can be verified anytime by anyone
participating in the network. These identities are part of the process of giving members of

INTERLACE Project (Grant no. 754494) 13

the circuit the right to work with and facilitate the network with particular roles and access
privileges. The actual empowering of a user takes place inside of the membership provider
(MSB).

However, the power of an MSP goes beyond simply keeping track of who is a network participant
or member of a particular channel. An MSP is able to identify specific roles an actor might play
within the scope of the organisation the MSP represents (e.g., admins, or as members of a sub-
organisation group), and in general defines the foundation for giving access privileges in the
context of a network and channel (e.g., channel admins, readers, writers). More details can be
found in the documentation on the Hyperledger Fabric website.9

For the sake of simplicity and in order to set up the prototype network quickly, access/role
management has been reduced to a minimum. Section 4.2 focuses on a more detailed explanation
on how these aspects work or might be changed in case of larger-scale scenarios.

Interlace
Organisation

Sardex
Organisation MSP

ORDERER
orderer.sardex.net

Network

PEER
peer0.sardex.sardex.net

MSP

Client
Client
Client

ID: SardexMSP

ID: InterlaceOrdererMSP

CA

Fig. 3.2: Network structure implemented by the Prototype

The single orderer node in Figure 3.2 is responsible for atomic broadcasts, orders/batches
transactions, and also signs each batch (block) to create unique and well-defined chains. The
membership provider of the orderer uses a central and pre-configured certification authority CA.

This network configures and starts one peer. This peer can be called the core of the environment
because its main task is to handle the so-called smart logic (chaincode). More specifically, peers
maintain the ledger by first endorsing a transaction (e.g. credit and debit transfers in the case
of INTERLACE), which they do by simulating it.10 Then, in an intermediate step it is validated by
the orderer and finally the peers commit it to their local ledger.

A very simple network is defined and described by the above scenario, which can be set up
following the instructions of Section 3.3. Certainly, this scenario needs to be extended to a real-

9 https://hyperledger-fabric.readthedocs.io/en/master/membership/membership.html
10 This is the execution step in the Execute-Order-Validate Hyperledger architecture [1]

https://hyperledger-fabric.readthedocs.io/en/master/membership/membership.html

14 D3.1

world environment, a few hints and considerations for which will be given in Figure 4.1 and
explained in Section 4.3.

3.2.3 Network Configuration Files

There are three main configuration files providing a basic foundation for generating a pre-
configured network. Those files are used to create the corresponding certificates as well as
configuration files to spin up virtualised containers. Thus, the following three yaml files are
an example of how to create a particular net as described in the previous section where the
INTERLACE network was shown:

1. crypto-config.yaml

2. configfx.yaml

3. docker-compose.yaml

crypto-config.yaml

The crypto-config.yaml contains the network topology and therefore defines its basic structure.
With the configuration file it is possible to use a tool called cryptogen which takes crypto-
config.yaml as input to generate the cryptographic material necessary to run the blockchain.
More specifically, cryptogen generates the keys for both the organisations and the components
that belong to those organisations.

Listing 3.1 shows a part of crypto-config.ymal that defines one or more orderers. The yaml
definition of the network peers is depicted in Listing 3.2.

1 OrdererOrgs:
2 # ---
3 # Orderer
4 # ---
5 - Name: InterlaceOrderer
6 Domain: sardex.net
7 # ---
8 # "Specs" - See PeerOrgs below for complete description
9 # ---

10 Specs:
11 - Hostname: orderer

Listing 3.1: crypto-config.yaml excerpt – Orderer(s) definition

Listing 3.1 shows that in the case of INTERLACE only one orderer is specified in line 5, with the
name InterlaceOrderer. The network domain sardex.net is defined with the Domain key. Thus,
together with the Hostname definition in line 11, the INTERLACE orderer can be reached using
orderer.sardex.net.

Peers can be defined for the various organisations. For example, Listing 3.2 shows the definitions
specific to the INTERLACE project. The first and only organisation for now is Sardex in the
sardex.net domain. Similarly, Sardex gets the Domain-name sardex.sardex.net. Taking a look at
the hierarchy one level down, peers will receive domain names like peer0.sardex.sardex.net or
peer1.sardex.sardex.net. As the template Count -key only defines a value of 1, there will only be
one peer with sub-domain name peer0.

INTERLACE Project (Grant no. 754494) 15

As mentioned above, user management is handled on a very small scale. Thus, when setting the
user count to 0 in line 18 no users in addition to the administrator are defined.

1 PeerOrgs:
2 # ---
3 # Org1
4 # ---
5 - Name: Sardex
6 Domain: sardex.sardex.net
7 EnableNodeOUs: true
8 # Peer nodes and if applicable host name templates
9 # for the newly created peers

10 Template:
11 Count: 1
12 # ---
13 # "Users"
14 # ---
15 # Count: The number of user accounts _in addition_ to Admin
16 # ---
17 Users:
18 Count: 0

Listing 3.2: crypto-config.yaml excerpt - Peer(s) definition

For more details on how to configure the network to a greater depth, kindly consult the official
Hyperledger Fabric documentation,11 which is a valuable source and should be studied in detail
in order to build Fabric-based networks.

In addition to the original Fabric documentation a reference guide called "Hands-On Blockchain
with Hyperledger" [10] was used to build this network.

configtx.yaml

The second configuration file is named configtx.yaml and contains different but also some
redundant configuration bits for the blockchain network. Another tool called configtxgen picks
up configtx.yaml and uses it to create configuration artefacts, thereby setting up a basic structure
utilized by the actual blockchain network. These artefacts are:

orderer genesis block
channel configuration transaction
an anchor peer transaction for each peer organisation

As stated in the Fabric documentation,12

The orderer block is the Genesis Block for the ordering service, and the channel configuration transaction
file is broadcast to the orderer at Channel creation time. The anchor peer transactions, as the name might
suggest, specify each Organisation’s Anchor Peer on this channel.

The core configuration excerpt can be seen in Listing 3.3. First, it defines an orderer genesis
block called InterlaceOrdererGenesis containing one orderer handled by organization Interlace
together with some capabilities (not discussed here) as well as a consortium using the network.

11 https://hyperledger-fabric.readthedocs.io
12 https://hyperledger-fabric.readthedocs.io/en/release-1.3/build_network.html

https://hyperledger-fabric.readthedocs.io
https://hyperledger-fabric.readthedocs.io/en/release-1.3/build_network.html

16 D3.1

Second, it sets up a channel InterlaceChannel which is connected to a consortium named
InterlaceConsoritum. This channel is used for credit and debit operations where currently only
one organisation is defined: namely, Sardex.

Third, as mentioned initially, anchor peers are recorded into the ledger. This is done by submitting
a transaction to the ledger which contains the main anchor peers. Anchor peers may be defined
for an organization using the config-property AnchorPeers. The project defines a host called
"peer0.sardex.sardex.net" that provides services at port "7051", consistently with the crypto-
config.yaml file. The host information is written into that initial transaction.

1 Profiles:
2 InterlaceOrdererGenesis:
3 Capabilities:
4 <<: *ChannelCapabilities
5 Orderer:
6 <<: *OrdererDefaults
7 Organizations:
8 - *Interlace
9 Capabilities:

10 <<: *OrdererCapabilities
11 Consortiums:
12 InterlaceConsortium:
13 Organizations:
14 - *Sardex
15 InterlaceChannel:
16 Consortium: InterlaceConsortium
17 Application:
18 <<: *ApplicationDefaults
19 Organizations:
20 - *Sardex
21 Capabilities:
22 <<: *ApplicationCapabilities

Listing 3.3: configtx.yaml excerpt – Profiles definition

docker-compose.yaml

Docker and Docker Compose are the core technologies used to start containerized services which
finally start the actual blockchain and its components. Hyperledger Fabric developer offer images
which are ready to be started right away when provided with the correct configuration locations.

The compose file defines four container images. In Listing 3.4 a shortened compose yaml-
file shows the services (or images) started when docker-compose up is called. One for the
certification authority (line 2), one for the orderer (line 4), one for the peer (line 6), and also
an additional container (line 8) the peer is storing data to. That additional container is a NoSQL
database called CouchDB.

1 services:
2 ca.sardex.sardex.net:
3 [...]
4 orderer.sardex.net:
5 [...]
6 peer0.sardex.sardex.net:
7 [...]
8 couchdb:
9 [...]

Listing 3.4: docker-compose.yaml excerpt

INTERLACE Project (Grant no. 754494) 17

Also docker-Composer creates a virtual network environment where the service containers
defined here can communicate between themselves using the particular domain names used
in this configuration file.

Each of the services starts its respective application, which handles the allotted requests.
The certification authority (CA) is started by calling fabric-ca-server, the orderer executes the
eponymous command orderer, the only peer (peer0) runs peer node start, and the CouchDB
image "couchdb" is started without specifying an additional command because the start-up
process is handled by the container image itself.

The CA might be replaced for a real-world production system by a different authority supporting
ECDSA certificates. Fabric only supplies this implementation to get a network quickly up and
running.

Cryptographic Material

Except for CouchDB, all other services need to be configured with the network structure as
well as the appropriate public-private key infrastructure. In the chain directory another folder
called network can be found. This folder contains templates of configtx.ymal as well as crypto-
config.yaml.

These template are, as mentioned, for generating the genesis block as well as the keys needed
for the corresponing service. We have scripted the generation: it can be performed by calling
build.sh, which is also located in the same directory as the yaml-files. The results of running the
build script are

interlace-channel.tx

interlace-genesis.block

crypto-config directory

These generated files as well as the directory are finally shared using docker volumes13 for the
respective services. A detailed description of how to configure the services can be found in the
online documentation of Fabric14 but also in [10].

3.3 Prototype

The prototype is a blockchain realisation of INTERLACE, can be found on GitHub15 and is based
on the specifications created in deliverable D3.1 [8] along with the ASIM specification of the
requirements.

First, it is necessary to install the prerequisites which are available for Linux and Mac OS.
Currently these are the recommended operating systems. However, with additional effort it might
be possible to run the INTERLACE blockchain on Windows directly. To support Windows users a
virtual machine set-up is also available.

Additionally, it is also important to set up a development environment described in the Composer
GitHub repository. Even if development is not planned and setting up a complete environment
not necessary, it is still advisable to install and start Composer Playground. Playground enables

13 https://docs.docker.com/storage/volumes/
14 https://hyperledger-fabric.readthedocs.io
15 https://github.com/InterlaceProject/InterlaceBlockchain

https://docs.docker.com/storage/volumes/
https://hyperledger-fabric.readthedocs.io
https://github.com/InterlaceProject/InterlaceBlockchain

18 D3.1

someone to connect, alter, and test the INTERLACE payment network. Nevertheless, Playground
is not required and it might be possible to use composer-cli or other methods to utilise the
network.

3.3.1 Install

This part of the documents talks about how to set up and run the business network on your
machine. However, before it is actually possible to begin it is necessary to install the pre-
requisites which are listed at the Hyperledger Composer documentation.16 The website also
offers a download where a script for installing all the requirements for a machine is provided.

Nevertheless, for Windows users these scripts won’t help because for now most of the packages
are not yet prepared (as of this writing) for a Windows operating systems. We have prepared a
virtual machine also for this user group, which also installs all the necessary frameworks and
software tools during provisioning. This virtual machine is controlled by vagrant17 and uses
hyper-v or virtual box as hypervisor (two different branches). This VM configuration is published
at GitHub18.

Environment Start-Up

Once the Hyperledger environment is installed, the next step is to start the INTERLACE
environment. To make communications uniform the blockchain is configured to publish all
services under the host name "interlace.chain". To facilitate Windows users, in the suggested
vagrant set-up the new hostname is added to your host-file at start-up time using the vagrant-
hostmanager plug-in. Thus there is no need to configure the name manually.

Configure Hostnames

For non-vagrant users it is important before executing the local set-up to add a host name entry
for "interlace.chain". Usually this entry will point to IP 127.0.0.1 (localhost). On a production
system or if it was chosen to start the Hyperledger Composer services on a public interface,
the IP needs to be fixed accordingly. Here is a list of host file locations according to different
operating systems types:

Mac OS: /private/etc/hosts

Linux: /etc/hosts

Windows: C:\Windows\System32\drivers\etc\hosts

The format may vary a little but usually a new host with its hostname is defined using its IP and
the desired host name as

127.0.0.1 interlace.chain

Depending on the operating system, it might be also necessary to update and restart the
corresponding services (e.g. MacOS).

Run the Fabric blockchain (the first time)

16 https://hyperledger.github.io/composer/latest/installing/installing-prereqs.html
17 https://www.vagrantup.com/
18 https://github.com/hirsche/hyperledger

https://hyperledger.github.io/composer/latest/installing/installing-prereqs.html
https://www.vagrantup.com/
https://github.com/hirsche/hyperledger

INTERLACE Project (Grant no. 754494) 19

At this stage, the main configurations have been performed and Hyperledger Fabric can be
started, which acts as a base for Hyperledger Composer. To continue, if not yet done the GitHub
repository19 needs to be downloaded by using the git visioning system by calling:

git clone https://github.com/InterlaceProject/InterlaceBlockchain.git

In the directory "InterlaceBlockchain" that is created the business network implementation,
including a web application, can be found. The next listing shows the bash script that downloads
several Fabric docker containers and finally starts them using docker-composer:20

cd fabric
./downloadFabric.sh # updates images - only the first time necessary
./startFabric.sh # start up docker environment using docker-compose

Initialize Interlace-Chain

Finally, after Fabric has been started the next step is to initialize the blockchain with

cd chain
./initNetwork.sh # use Hyperledger Composer to create a business network and
↪→ deploy it

./initNetwork.sh will copy all models and script to the network peers to make them accessible
in the Hyperledger blockchain. The last step in the script starts the business network.

It may be more convenient to access the network and test CreditTransfer or DebitTransfer
transactions using Playground. data.json should act as a helper to initialise the network by
hand, but it is recommended to update the JavaScript function initBlockchain(transfer) in
./chain/lib/init.js. That chaincode part is executed when transaction InitBlockchain is submitted.
Be careful to run InitBlockchain only once otherwise errors or duplicate entries might happen
resulting in an inconsistent chain.

Network updates after chaincode changes

After changes to the acl, cto, queries, the libraries, or other parts of the core chaincode
application, the network needs to be updated. This can be achieved by executing

cd chain
./updateNetwork.sh

This script reads the current version number of the package.json file, increments it by one, and
creates a new bna package. If the scripts are correct and the bna-package can be created it is
deployed to the peers and the network is updated to a new, higher network version which will
utilize the new bna package.

Shutting down

Sometimes it is useful to throw away everything and restart from scratch. To tear down Fabric
and remove card left-overs execute:

cd fabric
./teardownFabric.sh
./deletePlaygroundCards.sh

19 https://github.com/InterlaceProject/InterlaceBlockchain
20 https://docs.docker.com/compose/

https://github.com/InterlaceProject/InterlaceBlockchain
https://docs.docker.com/compose/

20 D3.1

Start a REST server

Once the network is running (no Playground needed) it is also possible to start an HTTP Server
which allows to interact with the network over REST. The script

cd chain
./startRestServer.sh

starts the server and provides GUI access to the RESTful interface by opening

http://interlace.chain:3000/explorer

in a browser. When accessing the REST interface from an external application, it may be reached
over

http://interlace.chain:3000/

If the host interlace.chain has not been set up and all the services are running locally without
a VM, it might be also possible to use localhost instead of interlace.chain as host name.
Nevertheless, it is highly recommended to use "interalce.chain" because everything has been
tested using that particular host name.

3.3.2 Working with the environment

Next, a closer look is taken on how the environment might be facilitated using different
approaches. It is possible to connect to the chain using composer-cli, taking advantage of
Composer Playground (the graphical interface) or using the simple web front-end created for
the project.

Start and test network with Playground

If you’ve decided to install and use Composer Playground it can be started using this command

composer-playground

The standard configuration opens a browser connecting to Playground at localhost with port
8080. If you are running Playground in a separate virtual environment like e.g. in a docker
container, it may be necessary to start the browser manually, determine the VM/Containers IPs,
and fill in the address manually in the URL field.

The Admin Cards

Composer Playground helps by providing a basic web interface to interact with the Hyperledger
Fabric blockchain, on top of which Hyperledger Composer acts as an additional wrapper.
Composer creates cards in order to connect to the blockchain. These cards can be created
over the Playground web interface or over the command line interface. For INTERLACE these
cards are created by initNetwork.sh, which is explained in Section 3.3. When these scripts are
executed, and no error messages are issued, two cards should have been created and should
become visible when opening Hyperledger Playground. This is illustrated in Figure 3.3.

These cards provide all the information needed to connect to the INTERLACE blockchain
business network. In particular, in the present case two cards are installed:

http://interlace.chain:3000/explorer
http://interlace.chain:3000/

INTERLACE Project (Grant no. 754494) 21

Fig. 3.3: Admin Cards in Hyperledger Playground

Peer Admin Card (PeerAdmin@sardex-open-network)

Business Network Card (admin@sardex-open-network)

Peer Admin Cards are cards (as the name suggests) used to interact with the peers. Users
connecting over that card receive the permissions to manage chaincode deployments or changes
on the peers. Thus they are a crucial part of every network.

Access to Interlace/Sardex Business Network is granted to another user through the provision of
a Business Network Card which is called admin@sardex-open-network.

For INTERLACE we currently only have one user in place, the admin user. However, if the
network gets deployed it will become necessary to grant access to other users, which can be
done by creating an additional Business Network Card for each new user. Be aware that for each
new user a participant needs to be registered first in order to link it with a new network card.

Edit Network

Figure 3.4 illustrates how a particular business network may be edited over Playground directly.
For INTERLACE this means that you can e.g. quickly try out some changes on the JavaScript
files and see if the changes are deployable by pressing the "Deploy changes" button. However,
most developers might prefer using a common IDE,21 which offers far better assistance during
development, and use the scripts initNetwork.sh and updateNetwork.sh provided.

Test Network

The INTERLACE blockchain might be also tested directly with Playground web interface instead
of using the Composer cli tools or launching the additional web application provided. Figure 3.5
shows the Playground test environment that comes with Playground and is started by pressing
"Test" in the menu bar.

21 https://en.wikipedia.org/wiki/Integrated_development_environment

https://en.wikipedia.org/wiki/Integrated_development_environment

22 D3.1

Fig. 3.4: Edit a network in Hyperledger Playground

On the left bar of that view you are provided with a list of the INTERLACE participants, assets, as
well as entry call "All Transactions". As the menu names might suggest, when clicking on them
a list of those items which have been created on the chain is displayed. E.g., this view in 3.5
lists all Individuals taking part in the Interlace-Test network. As shown in the main area of the
screenshot, two "Individual" participants have been registered. One member with ID "m1" and
one with ID "m2".

In addition, it is possible here to add and change entries for participants and assets you might
change for customised tests.

Finally, the "All Transactions" menu entry guides to a list of all transactions executed on the
INTERLACE chain. This list contains of course not just the transactions somebody has submitted
but also entries like e.g. "AddParticipant" or "IssueIdentity". Thus, all changes to the blockchain
are recorded and can be found here.

Submit a transaction

Figure 3.6 shows a submission dialog, which opens when the "Submit Transaction" button in
screenshot 3.5 is pressed. This dialog gives the possibility to select one of all possible transactions
executable on the INTERLACE network. In this dialog a CreditTransfer has been selected.

In the black text-box the properties of that transactions can be provided as a JSON-String. The
interface provides default transaction-specific values.

Once all the necessary properties have been provided, pressing "Submit" tries to commit the
transaction to the blockchain. If an error is encountered, it is shown in red font attached to
the same dialog. When everything goes as planned the transaction is endorsed, ordered, and
committed to the peers. The execution results will finally show up in the JSON records used for
the assets and participants as well as in the transaction log of the chain.

INTERLACE Project (Grant no. 754494) 23

Fig. 3.5: Test a network in Hyperledger Playground

Fig. 3.6: Submit a (credit) transfer in Hyperledger Playground

24 D3.1

Details on how to configure and initialize INTERLACE transactions are covered in Section 3.4.2
which discusses the technical details.

Run Transactions with composer-cli

Initialise network transaction:

composer transaction submit -c admin@sardex-open-network -d ’{ "$class": "net.
↪→ sardex.interlace.InitBlockchain" }’

The InitBlockchain transaction sets up some basic accounts as well as demo members that can
issue simple transactions right away.

Submit a credit transfer from account a1 to a2 with amount of 800 SRD:

composer transaction submit -c admin@sardex-open-network -d ’{ "$class": "net.
↪→ sardex.interlace.CreditTransfer", "amount": 800, "fromAccount": "resource:
↪→ net.sardex.interlace.CCAccount#a1", "toAccount": "resource:net.sardex.
↪→ interlace.CCAccount#a2" }’

Submit a debit transfer from account a1 to a2 with amount of 200 SRD:

composer transaction submit -c admin@sardex-open-network -d ’{ "$class": "net.
↪→ sardex.interlace.DebitTransfer", "amount": 200, "fromAccount": "resource:
↪→ net.sardex.interlace.CCAccount#a1", "toAccount": "resource:net.sardex.
↪→ interlace.CCAccount#a2" }’

A successful debit transfer creates a PendingTransfer entry with status Pending containing an
OTP (one-time password). This OTP can be used by the debitor to confirm the transaction. Thus,
in the next example "995317396" is used to call a transaction DebitTransferAcknowledge to
acknowledge the debit transfer:

composer transaction submit -c admin@sardex-open-network -d ’{ "$class": "net.
↪→ sardex.interlace.DebitTransferAcknowledge", "transfer": "resource:net.
↪→ sardex.interlace.PendingTransfer#995317396" }’

The web front-end

The web front-end currently is a simple website generated by a Yeoman generator provided by
the Composer community. The web application can be found in the web app directory.

In order to get the web application to run properly it is necessary to start up the whole network
and start the REST server as described in the previous steps.

The web app is based on AngularJS and needs various node.js packages downloaded and installed,
which is achieved by calling

cd webapp
npm install

After that a development server can be started by calling

cd webapp
npm start

INTERLACE Project (Grant no. 754494) 25

npm will start a web server at port 4200. If you work locally it also tries to open a browser which
shows the web application. Otherwise one needs to start a browser manually and enter the URL.
This is the URL where the server can be reached:

http://interlace.chain:4200

The webpage is based on AngularJS and communicates over REST with our previously started
REST server, enabling asynchronous AJAX-request.

3.4 The Chaincode

This section describes the core business logic, which is found in the chain directory. The
shell scripts ending with .sh were discussed in Section 3.3, except for startRestServer.sh
which is handled in the technical details Section 3.5. This section focuses on the chaincode
implementation which is stored in the directory lib illustrated in Figure 3.7.

chain
lib/

config.js
enums.js
init.js
transactions.js

models/
network/
connection.json
data.json
initNetwork.sh
package-lock.json
package.json
permissions.acl
queries.qry
updateNetwork.sh
startRestServer.sh

Fig. 3.7: Chaincode Directory Structure

In the lib directory, config.js contains the main configurations including things like time-outs,
quick-transfer amounts, and transfer types and account type mappings, which are done in the
form of a JSON object. Unfortunately, Composer doesn’t offer static access to enumeration
constants. All enumeration values of a type need to be addressed by a string value. This approach
is quite dangerous and gives potentially space for a lot of common errors. INTERLACE tries to
solve this issue by setting up an object with "frozen"22 attributes.

In Listing 3.5 a JavaScript mapping of the cto model enum type Unit in 3.6 is illustrated.

22 https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze

http://interlace.chain:4200
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze

26 D3.1

1 var Unit = Object.freeze({
2 ’Euro’: ’Euro’,
3 ’SRD’: ’SRD’
4 });

Listing 3.5: JavaScript enumeration mapping

Using this way of enum-mapping, a proper development environment suggests and auto-
completes the possible values of an e.g. Unit when the user works with it. Instead, there is
the possibility, as mentioned, to directly work with string values. But writing Unit.Euro instead
of "Euro" ensures during development when sources are linted23 that the correct enumeration
names have been applied.

1 enum Unit {
2 o Euro
3 o SRD
4 }

Listing 3.6: enum in CTO-model

3.4.1 Linking Transactions

There are two JavaScript files which contain the available transactions of the network: init.js and
transactions.js. Before going into the details of what these files contain, we give a simple example
of how transactions of the CTO model are mapped to a JavaScript function. Listing 3.7 gives a
short example of the syntax through which CreditTransfer transactions are linked to a JavaScript
function with the same name.

1 /**
2 * CreditTransfer transaction
3 * @param {net.sardex.interlace.CreditTransfer} transfer
4 * @transaction
5 */
6 async function CreditTransfer(transfer) { [...] }

Listing 3.7: Connection of JavaScript function CreditTransfer to CTO-model
transaction type

In this example the JavaScript name of the function is not important. Rather, what matters is
the notation @transaction, as well as the definition of the parameter(s) of the function and
of their type. More specifically, on line 3 the parameter transfer is linked to the CTO model
type net.sardex.interlace.CreditTransfer. When a CreditTransfer is invoked, usually using a
JSON string, this string is converted to a type in JavaScript that has the same properties as
net.sardex.interlace.CreditTransfer and that is provided as transfer input parameter.

Then, during execution the transfer input parameter may be used like any JavaScript object and
contains all the information necessary to process that transaction request. In JS, it is important
that the code be deterministic and that it evaluates to the same result on different peers.

23 https://en.wikipedia.org/wiki/Lint_%28software%29

https://en.wikipedia.org/wiki/Lint_%28software%29

INTERLACE Project (Grant no. 754494) 27

3.4.2 Init Blockchain

The only transaction in init.js should be executed only once, otherwise it will lead to an
inconsistent blockchain if executed twice. The reason is that this initialisation script sets up a
couple of participants with an account asset each to immediately test the blockchain. Thus, after
the "InitBlockchain" transaction has been executed the chain contains at least two members and
two accounts in order to move money around by applying credit and debit operations. Therefore,
executing the initialisation multiple times will create a pair of participants each time, leading to
a configuration that does not match other parts of the model.

Listing 3.8 shows parts of the actual creation of an asset as well as of a participant. It
uses getFactory(), which is part of the Composer API to generate new instances of various
types. The factory offers a function newResource to actually create first an "Individual" from
namespace net.sardex.interlace and afterwards a "CCAccount" residing in the same namespace.
The namespace is not visible in the script of Listing 3.8 because it has been configured in the
config.js file and applied to the config object.

Function newResource uses namespace, type name, and identifier as parameters and, in the case
of line 3, for example, gives back a JavaScript representation of "net.sardex.interlace.Individual".
The same principle applies to line 8 when a CCAccount is created.

To write a new resource to the ledger a registry of the type super-category has to be acquired.

Given that the Individual is a participant, the getParticipantRegistry function needs to be called
in order to write it to the chain. For any asset like the CCAccount, it is necessary to call the
getAssetRegistry function to receive the right registry.

1 let factory = getFactory();
2
3 let m1 = factory.newResource(config.NS, ’Individual’, ’m1’);
4 m1.firstName=’f1’;
5 [...]
6
7 let a1 = factory.newResource(config.NS, ’CCAccount’, ’a1’);
8 [...]
9 a1.balance=1000;

10 a1.member=factory.newRelationship(config.NS, ’Individual’, ’m1’);
11 [...]
12
13 let partReg = await getParticipantRegistry(config.NS + ’.Individual’);
14 await partReg.addAll([m1]);
15
16 let accReg = await getAssetRegistry(config.NS + ’.CCAccount’);
17 await accReg.addAll([a1]);

Listing 3.8: Chaincode adding a new resource in initBlockchain function

Once the registries are available, they can be called as in lines 14 and 17 with the matching type-
category, to finally ask to add a new entry to the chain. The Hyperledger Composer API also has
functions for reading, removing or update included. The documentation for the AssetRegistry24

and for the ParticipantRegistry25 can be found in the Composer documentation.

24 https://hyperledger.github.io/composer/v0.19/api/runtime-assetregistry
25 https://hyperledger.github.io/composer/v0.19/api/runtime-participantregistry

https://hyperledger.github.io/composer/v0.19/api/runtime-assetregistry
https://hyperledger.github.io/composer/v0.19/api/runtime-participantregistry

28 D3.1

3.4.3 Main Payment Transactions

The current implementation comes with credit and debit transactions that work according to the
specifications made in D2.1 [3] and D3.1 [8], except for the requirement concerning the tracking
of the debt position over time, DeltaDebt, which can be found in D2.3 [5].

CreditTransfer chaincode

Let’s now focus on the first of the two payment transactions: the credit transfer. Listing 3.9 shows
the core of the JavaScript function without the additional function wrappers.

The code was written in a way that is supposed to be readable by people who may not be
JavaScript experts. Nevertheless, the keyword await might need a brief explanation:26 await
deals with asynchronous JavaScript function calls and (in simplified terms) just waits until the
prefixed function completes its task. If await were missing, an asynchronous JavaScript (like
previewCheck) would be called and executed in the background and the execution of the current
thread would continue immediately.

1 //some basic checks
2 await checkAmountPlausible(transfer);
3
4 // preview check throws error in case of violation
5 await previewCheck(transfer);
6
7 // account limits checks throws error in case of violation
8 await accountLimitCheck(
9 transfer.fromAccount,

10 transfer.toAccount,
11 transfer.amount);
12
13 // check account limits and emits event if violated
14 await checkAccountLimitsAlerts(transfer.fromAccount);
15
16 // perform the transfer
17 await moveMoney(transfer);

Listing 3.9: CreditTransfer JavaScript

The transfer object used in the listing is pre-filled by the chaincode API after a Credit-
Transfer is invoked. It is created from the parameters and values of the JSON object that
is part of the submitted transaction and that follows the structure of the CTO model of type
net.sardex.interlace.CreditTransfer.

DebitTransfer chaincode

The debit operation, shown in Listing 3.10, is a bit more complex compared to a basic credit
operation. In that listing only the important part of the function is shown. The leading part
calling checkAmountPlausible, previewCheck, and accountLimitCheck is exactly the same as in
CreditTransfer and, therefore, it was left out to increase readability.

One note for debit operations resulting from the specifications is that the owner of the
fromAccount from the debit transfer is the debitor, who is also the buyer. Whereas the toAccount

26 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await

INTERLACE Project (Grant no. 754494) 29

owner is regarded as the creditor who is selling something. Please see Figure 2.7 in D3.1 [8] for
the definition of fromAccount, toAccount, and related concepts.

Continuing further with the implementation, the core of the debit operation checks if an
immediate transfer is possible (amount smaller than a predefined value) or if a confirmation
of the other party is necessary. In case of an immediate transfer the money is moved the same
way as in CreditTransfer by calling the moveMoney function. If the transfer amount is above a
threshold (currently 100 SRD), however, a confirmation needs to be obtained from the debitor
who is in our case the owner of the fromAccount of the transfer.

1 // check for immediate transfer possibility
2 if (transfer.amount <= config.debit.quick_transfer_amount) {
3 // perform the transfer
4 await moveMoney(transfer);
5
6 // check account limits and emits event if violated
7 await checkAccountLimitsAlerts(transfer.fromAccount);
8 } else { // requires confirmation
9 // add the debit transfer to the pending queue

10 let otp = await insertPendingTransfer(transfer);
11
12 // create confirmation event RequestDebitAckReqAnswCompletion
13 // which is including the OTP and the sender account (of debitor)
14 [...]
15
16 // emit the event
17 emit(confirmReq);
18 }

Listing 3.10: DebitTransfer JavaScript

If a confirmation is needed the transaction DebitTransfer cannot move the amount from account
A to account B instantaneously. To remember all values of that transaction they are stored
inside asset PendingTransfer which uses an OTP as identifier. The insertion done by Function
insertPendingTransfer returns a new OTP when successfully, creating a transfer which is
awaiting confirmation.

In order to tell a user that there is a pending confirmation waiting DebitTransfer issues an event
called RequestDebitAcknowledge of namespace net.sardex.interlace defined in the CTO model.
When instantiated, the event obtains a reference to the just created PendingTransfer which is
done by using the factory object (received by the composer API) and calling newRelationship
which utilizes the OTP references.

DebitTransferAcknowledge chaincode

Each entry in PendingTransfer is identified by an OTP in a way that a transfer can be
unambiguously selected by providing an OTP. Currently the OTP is generated by hashing the
transaction id of the debit transfer. However, if a debitor would like to confirm a transfer of
which he was informed by the emitted event, he just needs to pass the OTP as property for the
DebitTransferAcknowledge transaction.

Note: For production systems this identification might include an additional key since for large
numbers of PendingTransfers the OTP generated in this way might not be unique anymore.

30 D3.1

Listing 3.11 shows the main part of DebitTransferAcknowledge, which is different from the other
transactions. The variable ack in the script is a transaction object provided to the function
which contains the PendingTransfer read into variable pT. Then the code tries to verify the
TransactionStatus. If the transaction is in state Pending it may proceed; in any other case an
error is thrown and the transaction is discarded (!not! recorded into the ledger).

If the process is continued the timestamp of the transaction is checked against the expires date
property of the pending transfer. Consequently, if expired, the state is updated to "Expired" and
function DebitTransferAcknowledge returns with the corresponding status AcknowledgeStatus.

1 [..]
2 //get pending transaction
3 let pT = ack.transfer;
4
5 // verify state of pending transfer
6 if (pT.state !== TransactionStatus.Pending) {
7 throw new Error(’Transfer is not in state "’ +
8 TransactionStatus.Pending + ’" but in state "’ + pT.state + ’"’);
9 }

10
11 // varify if pending transaction has been expired
12 if (ack.timestamp >= pT.expires) {
13 //update state from Pending to Rejected
14 await updatePendingTransaction(pT, TransactionStatus.Expired);
15
16 //prepare return message
17 rS.status = TransactionStatus.Expired;
18 rS.description = ’OTP ’ + pT.otp + ’ is expired.’;
19 return rS; //TODO: raise event
20 }
21 [..]

Listing 3.11: RequestDebitAcknowledge JavaScript excerpt

In the later parts of the function, after all of the checks have been passed and the debit
transaction can be performed, the execution steps are pretty much the same as in a Credit-
Transfer. The only difference is that in case of success or error the PendingTransfer asset of
the transaction needs to be updated to Performed or Rejected, respectively. A function called
updatePendingTransaction, also used in line 14 of Listing 3.11, takes care of putting the asset
PendingTransfer into the right state.

Additionally, in all cases in which updatePendingTransaction has been applied, also a status
object called AcknowledgeStatus is created and returned by the function that contains the
resulting status, along with an error message if something went wrong.

moveMoney & DeltaDebt

Actual movement of an amount from one to an other account is performed by basic addition
and subtraction applied to the balances of the respective accounts and, finally, by updating the
account assets in the ledger by means of the registry provided by the Hyperledger Composer
API.

Another important step, however, which is part of this money transfer and is shown in Listing
3.12, is an additional functionality which was specified in D2.3 [5]. This logic collects all debts,
thus, every transactions which are causing the balance to go negative or to increase (in absolute

INTERLACE Project (Grant no. 754494) 31

value) an already negative balance. These debts are collected because they are handled similarly
to a loan. ALthough they don’t incur interest or any additional fees, these debts have a due date
of 12 months by when they need to be paid back. See the Appendix of [5] for more details.

1 [..]
2 // check balance if DeltaDebt entry needs to be added
3 // !after amount has been substracted!
4 if (transfer.fromAccount.balance < 0) await createDeltaDebt(transfer);
5 // check balance if clearing an open DeltaDebt is necessary
6 // !before amount has been added!
7 if ((transfer.toAccount.balance - transfer.amount) < 0) {
8 await clearDebt(transfer);
9 }

10 [..]

Listing 3.12: moveMoney JavaScript excerpt

The creation of a debt handled by createDeltaDebt is straightforward and just adds an entry to
asset DeltaDebt if a transaction has been detected which causes a negative balance or makes an
already negative balance more negative. A new DeltaDebt entry receives an original amount, a
current amount, an owner id, and of course a due date by when it needs to be paid back.

If however a transaction adds money to the account owner’s balance, say with a positive amount
"Amount", former DeltaDebt entries may be cleared, which is done by querying all debts with a
still unpaid amount. This is illustrated in Listing 3.13, where a rich query called selectDeltaDebt
is used to account for all of those unpaid debts. Details of this and other queries are discussed in
subsection 3.4.5.

1 // query result sorted by "oldest" first
2 let openDelta =
3 await query(’selectDeltaDebt’, {ID: (transfer.toAccount.member.memberID)});

Listing 3.13: clearDebt JavaScript excerpt

All selected debts are iterated, starting with the oldest first. The available portion of Amount
gets subtracted from the current DeltaDebt asset. If Amount is bigger than the current debt
being examined, the rest of Amount (amount = amount − deptPos) is used in the next iteration
step towards the clearing of the next-oldest entry of DeltaDebt. Thus, this loop continues either
until Amount has been all used up or all debts have been paid back, which also means in the
latter case that the balance goes back to having a zero or positive value.

3.4.4 Additional Transactions

There is an additional transaction important for maintenance issues. This transaction, called
CleanupPendingTransfer, is illustrated in Listing 3.14 and takes care of handling old entries of
asset PendingTransfer.

In some cases pending transfers stay unconfirmed for ever because they e.g. were issued wrongly
by a user, or were duplicates if a connection had been interrupted together with a lost emitted
acknowledge-request event. In such cases, for legal and security reasons these transfers have to
be set to Expired.

32 D3.1

1 let expiredPending =
2 await query(’selectExpiredPendingTransfers’, {now: (transfer.timestamp)});
3 let aR = await getAssetRegistry(config.NS + ’.PendingTransfer’);
4
5 // change all states to expired
6 expiredPending.forEach(p => p.state = TransactionStatus.Expired);
7 await aR.updateAll(expiredPending);

Listing 3.14: clearDebt JavaScript excerpt

First, the chaincode shown selects all expired entries with query selectExpiredPendingTransfers.
Then it iterates all of them applying the new state. Finally, all entries are updated using the
AssetRegistry.

As this is a maintenance transaction it should be executed only by an admin or a user with a
specific maintenance role.

3.4.5 Queries

Using Hyperledger Composer it is easy to read data written into the ledger. This can be done
with its bespoke query language by defining a file called queries.qry.

The Hyperledger Composer Query Language27 is used in INTERLACE to read information about
PendingTransfer as well as about DeltaDebt. Although it looks similar to SQL, it has only a very
limited set of operators. Nevertheless, for INTERLACE these limitations are not relevant because
simple selection and filtering is sufficient, as can be observed in Listing 3.15.

The first query in the listing selectExpiredPendingTransfers is used by transaction CleanupPend-
ingTransfers to find all transfers which are outdated and should be marked as Expired. More
specifically, the SELECT keyword expects an asset defined in the CTO model and will return all
the entries in the ledger filtered by the WHERE condition.

query selectExpiredPendingTransfers {
description: "select all expired transfer which are still in state pending"
statement:

SELECT net.sardex.interlace.PendingTransfer
WHERE ((expires <= _$now) AND (state == ’Pending’))

}
query selectDeltaDebt {

description: "select all open debts"
statement:

SELECT net.sardex.interlace.DeltaDebt
WHERE ((deptPos > 0) AND (debitorID == _$ID))
ORDER BY [created ASC]

}

Listing 3.15: INTERLACE business network queries

Here we filter against property expires and state equals to ’Pending’. Parameters like _$now may
be supplied using a JSON-like reference from JavaScript.28

27 https://hyperledger.github.io/composer/v0.19/reference/query-language
28 https://hyperledger.github.io/composer/v0.19/api/client-businessnetworkconnection#buildquery

https://hyperledger.github.io/composer/v0.19/reference/query-language
https://hyperledger.github.io/composer/v0.19/api/client-businessnetworkconnection#buildquery

INTERLACE Project (Grant no. 754494) 33

In query selectDeltaDebt, all the open debts of a particular debitor (member of the circuit) who
has id _$ID are selected. Like parameter _$now, parameter _$ID needs to be set by the calling
counterparty.

3.4.6 Access Control Language File

The INTERLACE prototype currently only has one user, who is also the admin and user of the
whole network – no certificates have been issued for other users. This can be easily changed by
adopting the .acl file of the implementation and binding certificates to participants. However, to
reduce complexity, especially for people who work first with the demo implementation, the set-up
has been kept simple in this regard.

Listing 3.16 shows the INTERLACE Access Control Language file, permissons.acl, which grants
access to any user with any operation available.

1 rule Default {
2 description: "Allow all participants access to all resources"
3 participant: "ANY"
4 operation: ALL
5 resource: "net.sardex.interlace.*"
6 action: ALLOW
7 }
8

9 rule SystemACL {
10 description: "System ACL to permit all access"
11 participant: "ANY"
12 operation: ALL
13 resource: "org.hyperledger.composer.system.**"
14 action: ALLOW
15 }

Listing 3.16: Access control configuration for INTERLACE

Details on how to refine access can be found in the Hyperledger Composer documentation.29

3.4.7 Deployment

As mentioned in Section 3.3.1, the deployment of the chaincode application has to happen
in several steps which are handled by initNetwork.sh, or after consecutive changes with
updateNetwork.sh. Both scripts utilize the hyperledger composer-cli component.

The script initNetwork.sh needs to:

1. create package.json if it does not exist,

2. pack all sources into a bna-file,

3. create a network card for the ChannelAdmin as well as the PeerAdmin roles,

4. import that card,

5. install the new network,

6. start the new network,

7. and finally import the network admin card generated by the starting process.

29 https://hyperledger.github.io/composer/v0.19/tutorials/acl-trading

https://hyperledger.github.io/composer/v0.19/tutorials/acl-trading

34 D3.1

Basically, the script will provide a running business network together with composer cards which
are connection profiles used to access the network.

During development the network usually needs to be deployed a couple of times to check and test
the implementations. updateNetwork.sh was created for this purpose. It reduces these 7 steps
necessary for initial install to just 4 that handle an intermediate update. These steps are:

1. increase the version of the business network implementation,
2. re-pack the changed sources into a .bna file with a higher version tag,
3. install the new .bna file on the network,
4. and at last upgrade the network to the new version.

3.5 REST Server

A REST server used for connections of client applications can be provided by the Hyperledger
Composer REST Server CLI-Tool.30 The REST server is able to connect to the business network
and provides access to all assets, transactions, and queries available on the network.

For INTERLACE all the configurations necessary to run this server are gathered inside
startRestServer.sh. The exposed REST API is shown in Figure 3.8 and is built with Swagger
tools.31

Fig. 3.8: REST GUI provided by composer-rest-server using Swagger

30 https://hyperledger.github.io/composer/latest/reference/rest-server
31 https://swagger.io/

https://hyperledger.github.io/composer/latest/reference/rest-server
https://swagger.io/

INTERLACE Project (Grant no. 754494) 35

3.6 Web Application

Figure 3.9 shows an illustration of a web page generated for the INTERLACE business network
implementation. It was created using generator-hyperledger-composer,32 which is a Yeoman33

module.

Fig. 3.9: An AngularJS-based web application

In this web application it is possible to list, add, and edit assets and participants, as well as submit
transactions to the network. It is implemented in AngularJS34 and connects to the REST server
which is, as mentioned, also provided by the Composer Tools suite. Consequently, it is possible
to manage assets like SysAccount, CCAccount, PendingTransfer, and DeltaDebt. Participants
like Subscriber and Individual are using these assets, whereas transaction CreditTransfer,
DebitTransfer, DebitTransferAcknowledge, and CleanupPendingTransfer handle how the assets
are processed during application access.

Fig. 3.10: Credit/Debit Transfers

32 https://www.npmjs.com/package/generator-hyperledger-composer
33 http://yeoman.io/
34 https://angular.io/

https://www.npmjs.com/package/generator-hyperledger-composer
http://yeoman.io/
https://angular.io/

36 D3.1

With the appropriate permissions, like we have with the admin user, assets may be changed
directly, without calling any of the mentioned transactions which normally take care about
updating the chain consistently. Further, regardless of how the assets are changed (i.e. using
custom transactions or just executing changes directly), all manipulations to the chain are
recorded to the chain and clearly traceable.

Figure 3.10 shows the graphical interface for an invocation of a credit/debit transfer. It picks
up a fromAccount, toAccount and the amount that needs to be transferred. As explained in
Section 3.4, for a DebitTransfer to be performed the owner of the fromAccount needs to send a
DebitTransferAcknowledge confirmation.

Chapter 4

Conclusion and Final Thoughts

Eduard Hirsch

This last chapter discusses the goals reached as well as the problems encountered during the
development of the INTERLACE prototype. Additionally, it emphasises possible enhancements
necessary and issues which need to be taken into account in order to bring the prototype to
production level. Finally, it discusses parts that could not be finished as well as after-INTERLACE
goals.

4.1 Best Practices, Falsey Values and Pitfalls

When using Hyperledger Composer but also when connecting to Hyperledger Fabric directly, it
is important to pay attention to some points. Developers have to be aware that working with
chaincode or smart contracts is quite different from accessing data as usual in a RDBMS,35

even though up-to-date frameworks shield a lot of the complexity underneath. Thus, even though
access to the data structures and virtual machine/execution capabilities looks similar from a
developer’s point of view, it is necessary to account for some peculiarities related to blockchain-
based technologies, because of their highly distributed nature. In the following sections we
discuss and attempt to clarify some of these peculiarities.

4.1.1 Deterministic Execution

One of the most important things to keep in mind when writing chaincode applications is the
deterministic execution of transactions. Although it seems quite obvious at first, it can be quite
challenging to achieve.

One example is the generation of IDs: in a standard database environment simple locking
mechanisms are in place to ensure correct primary keys for entries in a table. For blockchains
which live in a distributed, consensus-based system it is problematic to create identifiers over
chaincode execution. The reason is that each peer processing a transaction would compute a
new ID completely independently, and most likely at the about the same time. Thus, if such a
key-/ID-generation created different IDs on different clients, it might not be possible to reach
consensus; thus, although nothing is actually wrong with the transaction itself, the resulting
blockchain states in each peer would be different and therefore the last action would be rolled
back. This would be especially hard to deal with during race conditions, and even more difficult
to find out why a particular problem has occurred.

One solution to this problem could be to generate the ID from the client and pass it to the
transaction as parameter. This would result in a much safer creation process which, additionally,
is much faster during execution.

Another problem is posed by the use of random numbers. Since such calculations would reach
different results on the various peers of the network, creating random numbers in chaincode
executions would cause sever problems when creating IDs from those numbers or randomizing

35 Relational Database Management System

38 D3.1

decisions based on them, causing the results to be non-deterministic. Further, since it is not
possible to know when a peer in the network will receive a new transaction, also the creation of
a date or a timestamp contains an intrinsically random factor. Thus, dates created by different
peer nodes during chaincode execution are most likely at least a bit different from each other, and
when written into an e.g. asset can cause fork-inducing blocks, i.e. blocks with different hashes
on the various nodes that would therefore need to be rolled back when detected.

Listing 4.1 shows an example of a chaincode function which creates a new date in line 8. The
variable currentDate will be filled with the current timestamp of each node’s operating system.

1 /**
2 * CreditTransfer transaction
3 * @param {net.sardex.interlace.CreditTransfer} transfer
4 * @transaction
5 */
6 async function CreditTransfer(transfer) {
7 [...]
8 let currentDate = new Date(); //incorrect!
9 [...]

10 }

Listing 4.1: An example of chaincode with wrong determination of the current date

This implementation will lead to inconsistent values of different peer nodes, which may result in
various problems. For example, a possible scenario is that the date has been truncated to contain
only day, month and year (no hour, seconds, ...), such that execution of the same transaction
on different peers is likely to happen on the same day. In such a case, peers are able to reach
consensus most of the time. However, validation of a transaction on different blockchain nodes
would not be possible if it happens on different days (if e.g. execution is delayed or at the end of
a day) or if it is (re-)checked retroactively.

To explain further, chaincode running on peer A may produce a date of 12 April 2018 at 23:59 in
the evening. If peer node B receives the same transaction at 00:00 the next day, it will produce
the date 13 April 2018. Also, if e.g. somebody wants to check if the blockchain is in a consistent
state, a transaction might be re-executed at any point in time after 12 April 2018 (staying with
this example). Then the chaincode needs to run again and a date already written into the chain
will be definitely different from the date produced during the re-execution. Consequently, those
examples will lead to different outcomes on different peer nodes and therefore will trigger a
rollback of the transaction or mark the whole chain as invalid from the point in time where that
particular transaction had been appended to the ledger.36

The solution to these kinds of problems is to provide the possibly changing factor as an input
parameter instead of creating it inside of the chaincode. Input parameters stay the same once a
transaction proposal has been accepted and written into the chain. Thus, for every re-execution
or validation they may be picked from there, allowing a re-run of the code that results in the same
outcome every time when called. Therefore the re-generation of the the block hash will give the
exact same hash as the "previous Hash" attribute of the next block.

Given that in our implementation we are using Hyperledger Composer, the solution to the date
problem could be to add an additional attribute for the abstract transaction Transfer inside of our
CTO-model definition, like adding DateTime timeInitiated . Then it would be necessary to pass a

36 Ledger structure: https://hyperledger-fabric.readthedocs.io/en/release-1.3/ledger/ledger.html

https://hyperledger-fabric.readthedocs.io/en/release-1.3/ledger/ledger.html

INTERLACE Project (Grant no. 754494) 39

date value to the transaction for the timeInitiated property when invoked by a client which then
could be read from the transaction data during chaincode processing.

However, in the case of the date Hyperledger offers a better solution. In the sequence diagram
of the transaction flow37 that is prescribed by the Hyperledger protocol, the very first step when
proposing a transaction is to submit a PROPOSE message to the endorsing peers. The propose
message contains, among other things, the current timestamp of the transaction that, if validated,
is eventually stored into a block. Thus, our prototypical INTERLACE implementation enables this
timestamp to achieve the same goal as the propagation of the current date using the Transfer
CTO-type. The code example in Listing 4.2, finally, shows how the date may be read from the
transaction data.

1 /**
2 * CreditTransfer transaction
3 * @param {net.sardex.interlace.CreditTransfer} transfer
4 * @transaction
5 */
6 async function CreditTransfer(transfer) {
7 [...]
8 let currentDate = transfer.timestamp //correct!
9 [...]

10 }

Listing 4.2: An example of chaincode with correct determination of the current date

Final note: Chaincode needs to be executed deterministically and has to reach, given
its input parameters, the same result(s) on all the peer nodes at any point in time.
Consequently, many parameters cannot be generated by the chaincode directly but need to be
provided as parameters to a transaction. But since this means that the parameters are creatable
on the client-side only, it is also necessary to implement the corresponding logic in a way that
prevents them from being used to fool the system or bring it into an inconsistent state.

4.1.2 Network Upgrade

Traditionally, updating a database after changes to the database model may be quite cumbersome
due to the presence of new fields, foreign keys, and many other similar issues. However,
various methods and strategies are in place for handling these issues. On the other hand, since
blockchains are usually spread over various peers that store replicated data, in contrast to
traditional databases it is inherently more difficult to change the distributed structures to fit
some new schema necessary to add a new feature or functionality.

Updating or changing values of asset attributes, as well as getting executable code and data
structures ready for the next version of the network, may run into several problems. In particular,
in order to maintain consistency and reliably achieve all fixes it is necessary to apply all changes
to the network in such a way that upgrading the business network (CTO-File, chaincode, ...) and
fixing the asset values happen in the right order, and while nobody else is able to interfere. This
can be achieved by executing the upgrade as a single atomic transaction or, if that’s not possible,
by blocking common user access during deployment.

Thus, it is quite important to get everything right from the beginning, as it can be extremely
difficult to apply certain changes. Consequently, it is highly advisable to think about possible

37 https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html#swimlane

https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html#swimlane

40 D3.1

changes and future scenarios together with possible side-effects and costs before first deploy-
ment to production systems.

4.1.3 Hyperledger Composer Specifics

Composer can be seen as a rapid-development approach. Its API sits on top of the Hyperledger
Fabric framework. It tries to shield complexity from the user and aims to significantly reduce the
time necessary to create distributed applications for Hyperledger Fabric.

For the development of the INTERLACE transactional service this meant that:

models could be transferred easily,
chaincode could be based on these models,
a REST Server was supplied and
a web-application generator was available.

Consequently, it was an ideal framework for prototyping. In addition, once a suitable cloud
provider has been found, spinning up a network is straightforward. When hosting a network
without an external provider who knows how to run these networks, much of the initial speed
in creating it might be lost because, in such a case, a much deeper understanding of the whole
architecture is necessary. Thus, also a greater effort is needed to get a ready implementation to
work.

Note: For production systems it would be necessary to change to a plain Fabric implementation
because Composer is still at quite an early stage of development, and there are even rumours
that it may be discontinued. The reason is that some of the new features of the Fabric releases are
deviating from the structures implemented by Composer. So it is becoming increasingly difficult
for Hyperledger Composer developers to provide new features and functionalities available for
Fabric.

4.2 Identity Management

As mentioned in previous sections, we skipped Identity Management for the prototype in order
to simplify the environment, decrease development efforts and therefore offer a relatively easier
access to an example mutual credit system, hoping that this would make it easier to understand
the basics. Nevertheless, it would be possible and quick to create additional participants
and grant them access to the network in addition to just the currently used admin account.
For example, an identity card can be issued for the first participant defined in transaction
"InitBlockchain" which is identified by "m1". The example below illustrates how this might be
done:

composer identity issue -c admin@tutorial-network -f m1.card -u m1 -a "resource
↪→ :net.sardex.interlace.Individual#m1" -x true

This identity card is facilitated by the REST server and corresponds to a participant in the
business network. But, when accessing the REST server, before a user can act with that identity
it is necessary for him/her to log in first and authenticate his/her identity in some sort of way. To
do so composer-rest-server uses an authentication middleware implemented in JavaScript called
Passport.js.38

The passport middleware offers many different authentication strategies and is quite a mature
Open Source framework. An example of how to authenticate with OAuth and GitHub can be found

38 http://www.passportjs.org/

http://www.passportjs.org/

INTERLACE Project (Grant no. 754494) 41

on the Composer documentation website;39 but also different schemes can be used, like the JSON
Web Tokens (JWT40) which is mentioned in the issue tracker of the Hyperledger Composer GitHub
page.41

Passport is a commonly known middleware for authentication and may be applied also to different
scenarios. Thus, it is usable well also if Composer is swapped for another technology.

4.3 Future Scenarios

Because we are using Hyperledger Fabric, extending the network is only a matter of changing
the configuration. The approach taken for the INTERLACE prototype, shown in Figure 4.1,
creates a new organisation for every payment circuit that deals with a new specific region.
Consequently, each region would be responsible for hosting their own peers and ideally also
their own certification authority (CA). However, certificates might be still handled by the Sardex
CA.

Sardex, in this scenario, is providing the network architecture and transferring the know-how
about how to run a circuit, which would result in a model similar to a franchise. Although
the clients and various other visible graphical interfaces may be branded in various ways, the
underlying platform infrastructure would be predefined by Sardex in order to make the network
work consistently.

The orderer will be handled by Sardex as well, but later might be handed over to an e.g. non-
profit organisation representing the circuit and enforcing fair and clearly defined rules within a
governance framework defined in collaboration with the circuit members themselves. To ensure
a reliable system and a high performance throughput, an orderer could be clustered locally but
also over various regionally separated areas.

Sardex
Ordering

Sardex
Organisation MSP

ORDERER
orderer.sardex.net

PEER
peer0.sardex.sardex.net

MSP

Client
Client

Client

Client
Client

Client

ID: SardexMSP

ID: InterlaceOrdererMSP

CA
Sardex

Other
Organisation / Circuit

MSP

PEER
peerN...

PEER
peer0.other.sardex.net

...

...

CA
OtherOrg

ID: OtherOrgMSP

Network

Client
Client

Client

Client
Client

Client

Fig. 4.1: Extended Network Structure

39 https://hyperledger.github.io/composer/latest/integrating/enabling-rest-authentication
40 https://jwt.io/
41 https://github.com/hyperledger/composer/issues/2038

https://hyperledger.github.io/composer/latest/integrating/enabling-rest-authentication
https://jwt.io/
https://github.com/hyperledger/composer/issues/2038

42 D3.1

4.4 Final Review and Open Points

Our DLT application prototype forms a stable and scalable basis for a reliable payment circuit.
In fact, although the prototype was developed with Hyperledger Composer, which IBM may
discontinue support for, any subsequent implementation in Hyperledger Fabric only will now
be much easier to realize. This is also because newer versions of Fabric support a node.js SDK,42

which would even allow the transfer of JavaScript code bits.

In summary, the goal of creating a reliable DLT has been achieved, and forms a necessary
foundation for the various other services provided in future for the production-level business
solutions created by and with Sardex.

4.4.1 Open Points

The GDPR43 directive that came into effect in the first half of 2018 represents a challenge for
blockchain solutions and, therefore, also for the INTERLACE project. It is necessary that personal
information is not exposed to other parties unless necessary and unless it is done in agreement
with its owners. In addition, each piece of information collected for the user or provided by the
user needs to be deletable if the user requests it, and it must certainly be possible to look up
upon request exactly what data was collected.

Information is reliably stored inside of a blockchain. Thus, looking up information is actually not
an issue. Rather, one of the challenges is to keep it secret from being read by other parties,
since standard blockchain approaches copy everything to every peer. Another challenge is the
immutability of most blockchains, since GDPR enforces the right to be forgotten. The privacy
aspect is solved currently by making the actual chain only accessible by the peers that are
owned by the organisation running the local circuit. In this configuration, the clients that perform
transfers have restricted access and cannot see the whole blockchain.

In later stages it may be possible for every business/party participating in the payment network
to access the blockchain directly, i.e. to run a node. In this case the so-called SideDB44 can be
taken into consideration because it is a way offered by Hyperledger Fabric to store information
which is only known by the respective client and only shared if permitted by the client.

SideDB also solves the problem of GDPR-relevant data because, first, it is only exposed “to whom
it may concern” and, second, it can be purged without making the chain invalid. The reason is
that in SideDB only hashes of transactions and data are stored on the chain, which still makes
it verifiable by regenerating the hash and comparing every time a datum needs to be verified.
Normally the data only needs to be provided if specifically asked for, e.g. in case of an (external)
audit.

The second point which needs further effort is the part of the testing coverage where the ASIM
implementations are tested against the actual implementation of the prototype and later
against the production-level implementation. These tests will be covered in deliverables D4.1
and D4.2 whose future versions will be completed after the end of the project.

42 Software Development Kit
43 General Data Protection Regulation [11]
44 https://hyperledger-fabric.readthedocs.io/en/latest/private-data/private-data.html

https://hyperledger-fabric.readthedocs.io/en/latest/private-data/private-data.html

References

References

1. E Androulaki, A Barger, V Bortnikov, C Cachin, K Christidis, A De Caro, D Enyeart, C Ferris, G Laventman,
Y Manevich, S Muralidharan, C Murthy, B Nguyen, M Sethi, G Singh, K Smith, A Sorniotti, C Stathakopoulou,
M Vukolic, S W Cocco, and J Yellick. Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains. In EuroSys ï£¡18: Thirteenth EuroSys Conference, April 23-26, 2018, Porto, Portugal, New York, NY,
USA, 2018. ACM. URL: https://doi.org/10.1145/3190508.3190538.

2. E Börger and R Stärk. Abstract State Machines: A Method for High-Level System Design and Analysis. New York:
Springer-Verlag, 2003.

3. P Dini, E Börger, E Hirsch, T Heistracher, M Cireddu, L Carboni, and G Littera. D2.1: Requirements
and Architecture Definition. INTERLACE Deliverable, European Commission, 2017. URL: https://www.
interlaceproject.eu/.

4. P Dini, G Littera, L Carboni, and E Hirsch. D2.2: Iterative Architecture Refinement. INTERLACE Deliverable,
European Commission, 2018. URL: https://www.interlaceproject.eu/.

5. P Dini, G Littera, L Carboni, and E Hirsch. D2.3: Final Architecture. INTERLACE Deliverable, European
Commission, 2018. URL: https://www.interlaceproject.eu/.

6. Thomas Erl. Next Generation SOA: A Real-World Guide to Modern Service-Oriented Computing. Prentice Hall,
2014.

7. Kevin Forsberg and Harold Mooz. The relationship of system engineering to the project cycle. In INCOSE
International Symposium, volume 1, pages 57–65. Wiley Online Library, 1991.

8. E Hirsch, T Heistracher, P Dini, E Börger, L Carboni, M L Mulas, and G Littera. D3.1: First Demonstrator
Implementation. INTERLACE Deliverable, European Commission, 2018. URL: https://www.interlaceproject.
eu/.

9. Sam Newman. Building microservices: designing fine-grained systems. " O’Reilly Media, Inc.", 2015.
10. Anthony O’Dowd, Venkatraman Ramakrishna, Petr Novotny, Nitin Gaur, Luc Desrosiers, and Salman Baset. Hands-

On Blockchain with Hyperledger. Packt Publishing, 2018.
11. European Union Parliament and Council. GDPR - general data protection regulation. https://gdpr-info.eu,

2018. [Accessed: 2018-11-27].

https://doi.org/10.1145/3190508.3190538
https://www.interlaceproject.eu/
https://www.interlaceproject.eu/
https://www.interlaceproject.eu/
https://www.interlaceproject.eu/
https://www.interlaceproject.eu/
https://www.interlaceproject.eu/
https://gdpr-info.eu

	Introduction
	Objectives and Motivation
	Scope and Organization

	Design Discussion
	ASIM and blockchain
	From Servers to Agents and Peers
	Testing

	Solution Technologies

	Prototypical Implementation
	Project Structure
	Architecture
	Sardex Network
	Hyperledger Fabric Network
	Network Configuration Files

	Prototype
	Install
	Working with the environment

	The Chaincode
	Linking Transactions
	Init Blockchain
	Main Payment Transactions
	Additional Transactions
	Queries
	Access Control Language File
	Deployment

	REST Server
	Web Application

	Conclusion and Final Thoughts
	Best Practices, Falsey Values and Pitfalls
	Deterministic Execution
	Network Upgrade
	Hyperledger Composer Specifics

	Identity Management
	Future Scenarios
	Final Review and Open Points
	Open Points

	References

