

Interacting Decentralized
Transactional and Ledger
Architecture for Mutual Credit

WP3

Iterative Demonstrator Implementation

Deliverable D3.1

First Demonstrator Implemenation

Project funded by the European Commission
Information and Communication Technologies

FET OPEN Launchpad Project
Grant no. 754494

INTERLACE Project (Grant no. 754494)

D3.1 2

Contract Number: 754494

Project Acronym: INTERLACE

Deliverable No: D3.1

Due Date: 31/01/2018

Delivery Date: 27/07/2018

Author: Eduard Hirsch, Thomas Heistracher (SUAS), Paolo Dini (UH), Egon Börger (UNI PASSAU), Luca
Carboni, Maria Luisa Mulas, and Giuseppe Littera (SARDEX)

Partners contributed: Chrystopher L. Nehaniv (UH)

Made available to: Public

Versioning

Version Date Name, organization

1 20/01/2018 Paolo Dini (UH)

2 30/04/2018 Paolo Dini (UH), Eduard Hirsch (SUAS)

3 30/06/2018 Eduard Hirsch (SUAS), Paolo Dini (UH), Egon Börger (UNI PASSAU)

4 31/07/2018 PAOLO DINI (UH), EDUARD HIRSCH (SUAS), MARIA LUISA MULAS (SARDEX),
Egon Börger (UNI PASSAU)

Internal Reviewer: Paolo Dini (UH)

This work is licensed under a
Creative Commons

Attribution-NonCommercial-ShareAlike 4.0 Unported License.

Abstract

This report describes the ASIM implementation defined by Deliverable D2.1: Require-
ments and Architecture Definition, as well as mechanisms used to ensure a stable and
shared runtime environment and to guarantee testability and easy execution of the
ASIM model of the business logic. The implementation is based on a refinement of the
requirements that is detailed in this report, along with an updated formal specification,
relative to the original ASIM definitions of D2.1, in the Appendix. Finally, a presentation
of the runtime environment is given and discussed in the context of the future connection
to the blockchain-based backend.

Table of Contents

1 Introduction 6
1.1 Objectives and Motivation . 6

1.2 Scope and Organization . 6

2 Refinement of the INTERLACE Business Logic Specification 7
2.1 Context and Overview . 7

2.2 Permissioning Model Taxonomy . 9

2.2.1 Users and Groups . 9

2.2.2 Currencies and Channels . 9

2.2.3 Accounts . 10

2.2.4 Account Limits . 10

2.2.5 Operations . 11

2.2.6 Interaction Levels . 11

2.2.7 Visibility . 13

2.2.8 B2C Operations . 13

2.2.9 Initial Account State . 15

2.3 Transactability Workflow . 15

2.3.1 Identity MetaData . 15

2.3.2 Profile MetaData . 16

2.3.3 Transfer Types . 17

2.3.4 Account Connectivity . 18

2.3.5 User Transactability Functions . 19

2.3.6 Group Transactability Functions . 21

2.3.7 Transaction MetaData . 22

2.3.8 Account MetaData . 22

2.4 Account Limit Tests . 24

3 Introduction to the CoreASIM Language, Interpreter, and ICEF 25
3.1 Virtualization Environments . 25

3.1.1 Quick-Start Vagrant . 25

3.1.2 Quick-Start Docker . 26

3.1.3 Container and Virtual Machine-Based Environments 27

3.2 Execution Environment Stack . 28

3.2.1 Software Stack . 28

3.2.2 Provisioning Process . 28

3.2.3 Execution . 29

3.2.4 Development . 30

3.3 ICEF - The Interaction Computing Execution Framework 32

3.3.1 Framework Stack . 32

3.3.2 CoreASIM . 33

3.4 Model Execution Environment Details . 35

3.4.1 Environment Configuration . 35

4

INTERLACE Project (Grant no. 754494) 5

3.4.2 Execute the ASIM Specifications . 37

4 CoreASIM Implementation of the INTERLACE Business Logic 39
4.1 Introduction . 39
4.2 Agents . 39
4.3 Execution . 40

4.3.1 Main Agent Tasks . 41
4.4 Modularization and Include Syntax . 44
4.5 Dynamic Clients . 45

4.5.1 Communication and Message passing . 45
4.5.2 Message Types . 46
4.5.3 Client Features and Functionalities . 47
4.5.4 State Management . 50

4.6 Logging . 51
4.7 Test Scenario . 52

4.7.1 Separation of Concerns . 52
4.7.2 Simulation Environment . 53
4.7.3 Additional Login Layer . 55

4.8 Important Rules and Locations . 56
4.9 Implementation Challenges . 58

4.9.1 Issues . 58
4.9.2 Current Status . 59

5 Outlook and Next Steps 60

References 61

Appendix: Complete Functional Requirements and Business Logic Model (2018) 61
A.1 Signature Elements . 62

A.1.1 User groups: profile metadata and transfer type constraints 62
A.1.2 Account types, account metadata and account connectivity constraints. . . . 67

A.2 Credit Operation . 70
A.2.1 CreditPreviewReq program . 70
A.2.2 CreditPerformReq program . 71

A.3 Debit Operation . 73
A.3.1 DebitPreviewReq program (for SRD) . 74
A.3.2 DebitPerformReq program . 74
A.3.3 DebitAck/RejectCompletion programs . 76

A.4 New B2C operations . 78
A.4.1 Retail B2C operations (EurB2C and SrdB2C) 78
A.4.2 Mngr/SysAdmin fee operations:

RechargePrepaid, AcceptFee, LowPrepaymentAlert 80
A.5 User Operations . 81
A.6 Sub-Appendix 1: Sardex Business Logic in a Nutshell 81

A.6.1 The Credit operation components . 82
A.6.2 The Debit operation components . 83
A.6.3 The B2C operations . 86
A.6.4 The Manager/SysAdmin Operation Components 86

A.7 Sub-Appendix 2: IfThenElseCascade Pattern . 87

Chapter 1

Introduction

Eduard Hirsch, Thomas Heistracher and Paolo Dini

1.1 Objectives and Motivation

The overarching objective of this report is to present the concepts and steps necessary for
planning, implementing, and running a demonstrator of the distributed ledger specification
for the Sardex system developed by the INTERLACE project and based on the Abstract State
Interaction Machines (ASIMs) [4, 5]. The ASIMs are a generalization of the Abstract State
Machines (ASMs) [2, 1] that extends their functionality to support communications between
ASIMs running concurrently and asynchronously on different hosts. More specifically, this
report provides a consistent view of the Interaction Computing Execution Framework (ICEF),
of the CoreASIM executable modelling language, and of the implementation of the INTERLACE
business logic in this environment. This first demonstrator implementation reflects the core
architectural decisions made for a full-stack environment.

Before addressing the modelling and execution framework and the implementation-related work
done, this report also presents a refinement of the requirements laid out in Deliverable D2.1 [3]
for the purpose of developing a prototypical software implementation. In addition, these refined
requirements are also expressed as a formal ASIM specification in the Appendix of this report.
The Appendix should be seen as the next iteration of the specification provided in Chapter 3
of D2.1, based on the updated requirements description presented in Chapter 2 of the present
report. The ASIM specification in the Appendix forms the basis for the ICEF-compatible notation
used for the actual demonstrator implementation, discussed in Chapter 4.

The main motivations of the implementation effort are to demonstrate the viability of the
underlying Interaction Computing approach and to act as a proof-of-concept for the INTERLACE
payment specifications.

1.2 Scope and Organization

Within the scope of this report, the refinements of the business logic specification are derived
and explained in Chapter 2 through a textual description together with illustrations, diagrams,
and tables. Chapter 3 explains the configuration of the execution environment with all necessary
software products and tools, the setup of the ICEF, and the CoreASIM language for implementing
executable models. Chapter 4 discusses in detail the main implementation aspects and features
in CoreASIM. The report concludes by giving guidelines and addressing expected challenges for
further development such as testing and increasing stability of the ICEF framework. A more
detailed discussion of software testing and of the achieved outcomes will be documented in
Deliverable D3.2.

Chapter 2

Refinement of the INTERLACE Business Logic Specification

Paolo Dini, Luca Carboni, Giuseppe Littera, Egon Börger and Chrystopher Nehaniv

2.1 Context and Overview

The business logic specification provided in Deliverable D2.1 [3] concerns user-initiated transac-
tions. Although this is a subset of all possible operations (initiated by the users or by the System,
which we refer to as SysAdmin) that a mutual credit system platform must support, it is a viable
starting point for Ftesting an initial executable CoreASIM model. D2.1 did not provide all the
details of the transaction request operations, it left their specification at a fairly abstract level.
This chapter provides the next step in the iterative refinement of the specification in the form
of a detailed description of the Permissioning workflow, whose implementation as part of the
CoreASIM model is then described in Chapter 4. The description of the Permissioning iterative
refinement relies on graphical and tabular depictions of the variables and functions involved. As
this reflects the process that was used to build a shared understanding within the INTERLACE
team itself, it is hoped that it will also make it easier for newcomers to the INTERLACE open
source community to understand the implementation and the logic behind it. Finally, the refined
requirements presented in this chapter are also formalized completely in the Appendix to this
report, which could be seen as an iteration on Chapter 3 of D2.1.

At the highest level the INTERLACE transactional platform is a dynamic information system
that interacts with a database at the backend and with live users at the front-end. As already
discussed in D2.1, the transaction engine relies on many categories of concepts that, together,
constitute the domain model of the system. According to the Abstract State Machine (ASM)
methodology [2, 1], these have been subdivided into Abstract State Interaction Machines (ASIMs)
[4, 5] comprised of rules, programs, and various kinds of functions. Whereas concepts such as
‘user’ or ‘transaction amount’ are immediately clear, many more concepts and data structures
are needed to specify and model the system. Before we get into the details, it helps to introduce
three high-level perspectives through which the transaction engine can be characterized as
an abstract machine and as a social construct: privacy (private-public dichotomy), dynamics
(frequency domain), and transaction workflow already mentioned (time domain).

Identity
MetaData

Profile
MetaData

Transaction
MetaData

Account
MetaData

MetaData

More private More public

GDPR

Fig. 2.1: Relative privacy of different types of meta-data of the INTERLACE transaction engine

The first principle that influences the architecture of the system at a global level is the need to
comply with the GDPR directive. Figure 2.1 shows how from this point of view the Transaction
MetaData can be regarded as more public than the Account MetaData since it only contains a
memo describing the transaction. The figure also shows that sub-dividing the meta-data in this

8 D3.1

manner makes it possible to limit the need for GDPR compliance1 only to the Identity and Profile
MetaData. Second, in a physics context the level of dynamicity of the variables could be described
as the characteristic frequency (or its inverse, time-scale) at which different kinds of variables
change as the transactional workflow is carried out. Figure 2.2 shows how this principle applies
to the system’s meta-data – and happens to match the same ordering as the privacy view.

Identity
MetaData

Profile
MetaData

Transaction
MetaData

Account
MetaData

MetaData

More static More dynamic
Fig. 2.2: Relative dynamicity of different types of meta-data of the INTERLACE transaction engine

Third, Figure 2.3 shows the high-level view of the transaction workflow, including how the
PreviewRequest and PerformRequest rules specified in D2.1 map onto it. The process starts
on the left of the figure, when a user or SysAdmin initiates the request for a transaction. The
request must pass the three tests shown: Transfer Types, Account Connectivity and, in Inter-
Circuit operations, the euroFee is calculated and shown to the user. At this point the user is
shown a preview screen that summarizes all the transaction data. When the user issues the
command to proceed, the first two tests are repeated and a final test on the account limits (e.g.
sufficient funds) is performed. If also this fourth test is passed, the transaction is executed.

Transactability
(e.g. CreditPreviewRequest)

Test 1
(Necessary)

Sufficient

Transaction
(e.g. CreditPerformRequest)

Check
account
limits

Check
Transfer Types End

(GTF check NOT
Necessary)

Check
Account

Connectivity

Initiatior picks
Channel &
Destination

Start

User/System
actions

Test 4
(Necessary)

Test 2
(Necessary)

Or: System picks
Source & Target Groups

(for e.g. TF child
transaction)

Test 1
Test 2

[Repeated]

TT = Transfer Type
TF = Transfer Fee
GTF = Group Transactability Function

Test 3
(Necessary)

Identity
MetaData

Profile
MetaData

Transaction
MetaData

Account
MetaData

Calculate
and display
euroFee(s)

(Necessary)

No need to check

Memo entered at start:

Fig. 2.3: High-level workflow of the Permissioning process for user- or system-initiated transactions

In the following, first we provide a taxonomy of all the terms and concepts used and needed by
the model, and then proceed to explain each step of the transaction workflow.

1 General Data Protection Regulation: https://www.eugdpr.org/

https://www.eugdpr.org/

INTERLACE Project (Grant no. 754494) 9

2.2 Permissioning Model Taxonomy

2.2.1 Users and Groups

Users are organized by user types called ‘Groups’. Consistently with the Appendix, in mathemat-
ical notation a Group is a set of groups, such that group ∈ Group. However, also an individual
group is a set, specifically it is a set of users of the same type. Therefore, the group Retail is
capitalized, whereas a single shop is a retail . In the original Sardex platform not much distinction
is made between users and groups. However, in the current INTERLACE specification we do need
to discriminate between them.

For example, in a Credit transaction, fromUser , fromGroup, and fromAccount are all associated with the Buyer,
whereas the toUser , toGroup, and toAccount are associated with the Seller, i.e. the party receiving the funds.
In a Debit transaction, on the other hand, at the User level the Seller initiates the Debit transaction to draw
funds from the Buyer’s account. In this scenario, therefore, the Seller is the fromUser and the Buyer is the
toUser . However, at the Group level things are different and match the behaviour of the Accounts level. The
fromGroup and the fromAccount are associated with the party that is paying, i.e. the Buyer; and the toGroup

and the toAccount are associated with the Seller. See Section 2.2.6 for a detailed diagram.

The original Sardex system divided its users into 29 different groups. This generated a great deal
of complexity that is drastically reduced in the INTERLACE version of the platform. The new user
type taxonomy involves only 9 groups, as shown in Table 1.

Group Description of Element of Group

Welcome User who has joined and signed the contract, but has not yet been cleared to start trading
Retail Retailer who can only participate in B2C operations (not B2E and not B2B)

Company Company, which could be a retailer, that can use B2E and B2B but not B2C
Full This group has all the functions of Retail and of Company

Employee Employee of a company ∈ Company or of a full ∈ Full (or, also, of mngr ∈ Mngr)
On_Hold User whose privileges have been suspended (for whatever reason)

Consumer Person not registered to the circuit who can only interact through B2C Use Case 2
Consumer_Verified consumer who has registered and can now also purchase with SRD (B2C Use Case 3)

MNGR Manager of the circuit (e.g. Sardex S.p.A.) acting as a company rather than SysAdmin

Table 1: New user types (groups) for the INTERLACE platform

SysAdmin is not defined explicitly as a group, in this model, although technically it too is a
user type. SysAdmin has special privileges, some of which are discussed where relevant in what
follows. We do not use lower-case for MNGR and SysAdmin because there is only one of each.

2.2.2 Currencies and Channels

As shown in Figure 2.4, the Sardex/INTERLACE platform supports transactions in both Sardex
credits (SRD) and Euros (EUR) over two kinds of channels. ‘Service’ refers to transactions
mediated either by a computer (web application) or a mobile phone (either a web application
or a phone App). ‘POS’ means ‘Point of Sale’ and refers to the standard terminal used by retailers
that accepts credit or debit cards, through which SRD transactions can be routed via an API. The
figure also shows the four possible {currency , channel} combinations that we need to support in
the definition and implementation of the permissioning tests discussed in the next sections.

Currency = {SRD, EUR} Channel = {Service, POS}

1- {SRD, Service}
2- {SRD, POS}

3- {EUR, Service}
4- {EUR, POS}

Fig. 2.4: Currencies and channels supported by the platform

10 D3.1

2.2.3 Accounts

As shown in Table 2, the accounts implemented in the model reflect the current operations of the
Sardex system and the needs of a wide range of business operations and interactions. Some of
the account types, for example MIRROR, may be phased out as the high-level architecture of the
family of Sardex circuits grows and different algorithms replace the current strict controls on the
balance of payments between different circuits. Also, an account can be referred to as fromAcct

or toAcct depending on its role in the transaction. See Section 2.2.6.

Account Description

CC Standard Sardex credits (SRD) account
DOMU SRD account used for larger operations, such as for real estate or capital equipment

MIRROR Account controlled by MNGR, used for inter-circuit purchases
Income Statistical EUR account owned by retail or full that collects B2C payments
Prepaid Statistical EUR account from which the 2% child B2C transaction fee is drawn

Bisoo Statistical EUR account used by consumer to pay into Income
Topup Statistical EUR account used by MNGR to recharge retail ’s Prepaid account upon receipt of

a EUR payment. It is recharged back to zero gradually with each B2C transaction.

Table 2: New user types (groups) for the INTERLACE platform

2.2.4 Account Limits

Table 3 shows the account limit parameters that apply to the SRD accounts CC, DOMU, and
MIRROR. The credit limit is straightforward, it is the maximum negative value the account
balance can reach. However, note that it is expressed as a positive number (actually, a non-
negative number, since it can be 0) . This is important to keep in mind for the calculations that
are based on the value of this parameter. The credit limit is set at the time a user signs the
contract with Sardex and is reviewed at least every year after that. The upper limit is, similarly,
the maximum value the balance of the account is allowed to reach. Whereas the credit limit can
be considered to be a safety measure for the circuit, the upper limit is more a safety measure
for the user, since if the balance becomes too large-positive it may be difficult for the user to
find ways to spend the credits in a useful time (for the user). Capacity is the maximum total sale
volume that the user commits to accepting in one year. The alerts are safety buffers set by the
user to alert him/her when the account balance and/or the sale volume approach these limits.

Account Limit Parameter Description

creditLimit Maximum negative SRD balance allowed (non-negative number)
upperLimit Maximum positive SRD balance allowed (positive number)

capacity Maximum sale volume allowed in one year
lowBalanceAlert Buffer set by user: alert if (creditLimit + balance) < lowBalanceAlert

highBalanceAlert Buffer set by user: alert if (upperLimit − balance) < highBalanceAlert

highVolumeAlert Buffer set by user: alert if (capacity − saleVolume) < highVolumeAlert

Table 3: Account limit parameters

Figure 2.5 shows a visualization of the account limits that apply to SRD accounts such as CC .
The thick vertical green arrows highlight that the calculation of the sale volume is defined as
the sum of all the sales performed in one year. In this example, the sum of all the vertical green
arrows is 50,000. Figure 2.6 is a visualization of the Prepaid EUR account, which is recharged or
topped up once in a while (e400 in the figure) and slowly drawn down by B2C transaction fees
(see B2C Use Case 2 in Figure 2.10 below).

INTERLACE Project (Grant no. 754494) 11

2.2.5 Operations

As already specified in D2.1, transactions are effected through two operations: credit and debit :

Operation = {credit , debit}. (1)

0

10,000

5,000

-5,000

Months

3 6 9 12

upperLimit = 10,000

creditLimit = 5000

highBalanceAlert

lowBalanceAlert

saleVolume = 50,000

capacity = 60,000
highVolumeAlert = 5,000SRD

Balance
of CC

Account

Fig. 2.5: Visualization of the CC account limits

0

400

200

Months

3 6 9 12

lowBalanceAlert

EUR
Balance

of Prepaid
account

Fig. 2.6: Visualization of the Prepaid account limit

2.2.6 Interaction Levels

The interactions between circuit participants can be described from different points of view that
correlate loosely to a stack view of the system. As shown in Figure 2.7, it is helpful to identify
qualitatively the different levels of such a stack, acknowledging that it is more than a networking
communication stack in terms of scope but less than one in terms of precision. ‘A’ and ‘B’ refer to
the Buyer and the Seller respectively. Figure 2.7 extends the two communication levels described
in D2.1, but does so qualitatively. A formal desription will be provided in later sections and in the
Appendix. For the purposes of the implementation, we need a smaller set of levels but a more
precise and specific vocabulary to identify the end-points of the transaction.

12 D3.1

Credit Debit

3-Account

4-ASIM

fromAcct
(Buyer)

toAcct
(Seller)

fromASIM
(Buyer)

toASIM
(SysAdmin)

fromAcct
(Buyer)

toAcct
(Seller)

toASIM
(SysAdmin)

fromASIM
(Seller)

Goods &
Services

SRD or EUR

Message

Operation

fromGroup
(Buyer)

toGroup
(Seller)

2-Group

Transaction
Request

A
(Buyer)

B
(Seller)

A
(Buyer)

B
(Seller)

Level

0-Real
Economy

Payload
ExampleFrom To From To

Buyer
Seller
SysAdmin

Legend

1-User

Value of TT
function

fromUser
(Buyer)

toUser
(Seller)

toUser
(Buyer)

fromUser
(Seller)

toGroup
(Seller)

fromGroup
(Buyer)

The mapping this
Transfer Type (TT)
function models
replicates the flow of
currency in the
“3-Account” layer just
below.

Start
here!

Action

Seller gives
good to Buyer

Buyer initiates credit
transaction towards
Seller or vice versa

TT function
is evaluated

Funds are moved
from Buyer’s account

to Seller’s account

Client ASIM
sends message
to Server ASIM

Fig. 2.7: Stack view of the INTERLACE communication, economic, and financial interactions
(Stack view of from where to where the different payloads are moved in interactions)

Figure 2.7 has taken a long time to arrive at, and was changed several times after long and difficult
discussions. It was created, and should be interpreted, as some kind of Rosetta stone that brings together
different views of the transactions: economic, user-centred, mathematical, database-centred, and system
communications. In addition, it is also meant to maintain “conceptual” backward compatibility with the
previous system, in which the Transfer Types are attributes of the transaction recipients (i.e. the Sellers),
rather than mathematical functions whose values need to include the Sellers and whose input parameters are
the Buyers. This second (mathematical) view is adopted here; it allows to express the condition about whether
or not a Buyer and a Seller may transact based on how the function is defined. Section 2.3.3 describes this
function in detail.

Parameter/Actor Conditions

Order
of

Computation

3-AccountType

2-Group

Operation

{Currency, Channel}

Account MetaData

Amount

4-ASIMs

Preview

Perform

∃ connection

∃

Account Limits

Transfer Types

PhaseValues

{fromAcct, toAcct}

{credit, debit}

{Welcome, Retail, Company,
Full, Employee,

On_Hold, Consumer,
Consumer_Verified, MNGR}

{SRD, EUR} x {service, POS}

ℤℤ

{fromASIM, toASIM}

To/From Values

{fromGroup, toGroup}

{CC, DOMU, MIRROR,
Income, Prepaid,

Bisoo, Topup}

chosen by User

chosen by User

ASIM Identifier

Identity MetaData

Transaction MetaData

1-User {fromUser, toUser}

Fig. 2.8: Actors, parameters, levels, data structures, computational process, and conditions

INTERLACE Project (Grant no. 754494) 13

Figure 2.8 shows this additional information as concerns levels 1-4, which are labelled in the first
column in the same way as in Figure 2.7, along with some more information. In particular, this
figure could be seen to integrate aspects of Figures 2.7 and 2.3, with the purpose of facilitating
the conceptual understanding of the specification. The different types of ‘MetaData’ relevant to
transactions are shown in the approximate position where they are polled. For example, the % of
SRD accepted by a given user over 1000-EUR transaction values is part of the Profile MetaData
of the Company group but not the Consumer_Verified group’s.

2.2.7 Visibility

Figure 2.9 shows which groups (toGroup) are visible to which groups (fromGroup) by a ‘1’ at the
intersection of the (row , column) corresponding to a choice of (fromGroup, toGroup). For example,
Company is visible to Employee, meaning that Employee can do a search for Company , but not vice
versa. In this case Employee is not visible due to privacy legislation.

{F}

{T, F}

{T, F}

Visibility
(Look at the columns)

{F}

{F}

{F}

Welcome

Retail

Company

Employee

On_Hold

Consumer

W
el
co

m
e

Re
ta
il

Co
m
pa

ny

Em
pl
oy

ee

O
n_

Ho
ld

Co
ns

um
er

0 1 1 0 - - 0
0 1 1 0 - - 0
0 0 1 0 - - 0

0 1 1 0 - - 0
- - - - - - -
- - - - - - -
0 1 0 0 - - 0

fromGroup:

toGroup:

Consumer_Verified

Co
ns

um
er
_V

er
ifi
ed

MNGR

M
NG

R

0 -- - 01 1 0

1

1
1

0
-
-
0

0 0 - - 0Full

Fu
ll

1
1
1

-
-
1
1

1
11 01 {T, F}

{F}

{T, F}

Fig. 2.9: Mutual visibility of different groups

In general, transactability correlates to visibility. However, there is not a strict 1-1 relationship
between them. For the example of a company paying its own employees as part of the B2E
programme, employee remains invisible to a search, but company has the username of the employee

and can perform a credit transaction to pay (part of) their salary.

On the right of Figure 2.9 we show that some groups are always invisible {F} and others could
be either visible or invisible {T ,F}. For example, a company could be put in the shadow state if
it has reached its maximum positive credit limit.

2.2.8 B2C Operations

This report extends the use cases covered by D2.1 by adding also the Business to Consumer
(B2C) use cases. B2C was developed to increase the number and volume of transactions, i.e. the
size of the Sardex economy, by extending the ability to transact in SRD to people not otherwise
connected to the circuit. The principle involves offering the opportunity to retailers to reward
their EUR customers with an SRD rebate.

14 D3.1

The amount of the reward is a percent, in SRD, of the amount in EUR paid by a consumer or a
consumer_verified to a retail , where the percent is set by retail and it is an example of the MetaData

for this group. The reward is stored on a smart card that is offered to consumer at the time of
purchase. A consumer_verified already has a card, so their card is simply topped up. This is shown
as a child transaction in B2C Use Case 2, Figure 2.10.

Retail or Full MNGR

2) Income (€)
1) Prepaid* (€)

3) CC (SRD)

1) Topup* (€)
2) CC (SRD)

Recharge (top-up) of the Prepaid Account

Euro B2C Transaction

MNGR recharges Prepaid acct upon
receipt of corresponding Euro payment

2% Fee

Payment (Debit)

xx% Reward (Credit)

B2C Use Case 1

B2C Use Case 2

MNGR
1) Topup* (€)
2) CC (SRD)

Retail or Full

2) Income (€)
1) Prepaid* (€)

3) CC (SRD)

Consumer or Consumer_Verified
1) Bisoo (€)
2) CC (SRD)

Legend
User-initiated or user-triggered transaction
Automatic child transaction

 * Account under control of SysAdmin, not of user it belongs to

Fig. 2.10: Recharging of retail ’s Prepaid account and standard B2C EUR transaction

SRD B2C/B2E Transaction

Credit (Service) or Debit (POS)

B2C Use Case 3

Consumer_Verified or Employee
1) Bisoo (€)
2) CC (SRD)

Retail or Full

2) Income (€)
1) Prepaid* (€)

3) CC (SRD)

SRD B2E/B2B Transaction

Credit (Service) or Debit (POS)

Use Case 4

Company, Full, Employee, or MNGR

2) CC (SRD)3) CC (SRD)

Company, Full, or MNGR

Fig. 2.11: SRD transactions for B2C, B2E, and B2B users

Use Case 2 also involves a second child transaction, a 2% fee, in EUR, paid from retail ’s Prepaid
account to MNGR’s Topup account. The asterisks next to these account names, in the figure,
indicate that these two accounts are owned by these two users but are not controlled by them.
They are controlled by SysAdmin. These EUR accounts are ‘statistical’ rather than ‘real’, meaning
that they only keep track of actual EUR amounts but do not themselves hold Euros. Sardex S.p.A.

INTERLACE Project (Grant no. 754494) 15

would need to be a bank for that to be possible. For Use Case 2 to be executable, for a given
retailer, its Prepaid account needs to have sufficient funds. When it runs out of statistical Euros,
retail can pay MNGR some amount of Euros using any of the standard payment systems, through
a bank or a payment service provider like PayPal. This triggers Use Case 1, also shown in Figure
2.10.

Figure 2.11 shows the SRD transaction a consumer can perform, i.e. the spending of the SRD
accumulated as rewards, once they have registered and have become consumer_verified . The
figure also shows that Use Case 3 is relevant also to employees (B2E) and that Use Case 4 is
relevant to both B2E users and to non-retail company users (B2B).

2.2.9 Initial Account State

Table 4 shows the initial allocation of accounts to the different user groups. The allocation is
‘initial’ because depending on the history of a given user the number of its accounts could change.
For legal reasons, as a general principle ‘change’ can only mean ‘increase’. In other words, once
a user has become the owner of an account it can never be taken away from them, even if, for
example, the user’s access to it is suspended due to misbehaviour. Another example is a Retail

user who upgrades to the Full group and a year later changes its mind and goes back to Retail .
It will retain its DOMU account even if it won’t be able to use it anymore.

Note: Each user can have no more than one account of a given type.

Group Initial Account Set

Welcome {}
Retail {CC ,Prepaid∗, Income}

Company {CC ,DOMU ,Prepaid∗}
Full {CC ,DOMU ,Prepaid∗, Income}

Employee {CC}
On_Hold x , where x ∈ Powerset(CC ,DOMU ,Prepaid∗, Income)

Consumer {CC ,Bisoo∗}
Consumer_Verified {CC ,Bisoo∗}

MNGR {CC ,Topup∗,MIRROR}
Table 4: Initial sets of accounts assigned to the groups

(*Indicates an account under the control of SysAdmin (in the case of Prepaid)
or of a Retail or Full member (in the case of Bisoo), not of the user it belongs to.)

Note: The Prepaid account shown for Company does not relate to B2C operations but to
inter-circuit trade, which also involves a euroFee. A user cannot start as On_Hold , it will
start as one of the other groups. For legal reasons an account cannot be taken away once it has
been assigned to a user. Therefore, since any user can be suspended and become On_Hold , this
group could have different combinations of accounts (with the exception of the MNGR account).

2.3 Transactability Workflow

2.3.1 Identity MetaData

Table 5 collects the identity meta-data for all the groups. MemberID is a unique identifier. email

and phone are arrays to support multiple values of each. These values are set at registration and
cannot be changed by the user.

The meta-data variables are not capitalized because they are assumed to be singletons: for a
given member, e.g. a company , there is only one memberID . However, since there are many
memberIDs, one for each member, we could also say that memberID ∈ MemberID . Since there

16 D3.1

are cases where a user may have more than one meta-data variable, for example a company with
more than one phone number, this is indicated in the Type column as an array, i.e. ‘String[]’.

Group Identity MetaData Type Description

Welcome, Retail , Company , memberID Integer Unique member identifier
Full , Employee, On_Hold , email String[] e-mail address

Consumer_Verified , MNGR phone String[] phone number(s)
Consumer memberID Integer Unique member identifier

Table 5: Identity MetaData for all the groups

2.3.2 Profile MetaData

Tables 6 and 7 show the profile meta-data, some of which the user can inspect and edit. For
example, the user may wish to include his/her personal name in addition to the company name.

Group Profile MetaData Type Description

(Obligatory MetaData)
Welcome entityName∗ String Legal entity name

entityAddress∗ String Legal entity’s street address
gps∗ Double[] Legal entity’s GPS coordinates
VAT∗ String Legal entity’s VAT number

capacity Double Commitment to maximum yearly SRD volume
capacityDate DateTime Date capacity was set

(Optional MetaData)
firstName∗ String First name
surName∗ String Surname

(Obligatory MetaData)
Retail entityName∗ String Legal entity name

entityAddress∗ String Legal entity’s street address
gps∗ Double[] Legal entity’s GPS coordinates

capacity Double Commitment to maximum yearly SRD volume
capacityDate DateTime Date capacity was set
rewardRate∗∗ Double % reward rate to consumer, in SRD

euroFee Double[] % fee on B2C EUR sales, in EUR
acceptanceRate∗∗ Double Rate of SRD acceptance in consumer purchases

(Optional MetaData)
firstName ∗ String First name
surName∗ String Surname

(Obligatory MetaData)
Company entityName∗ String Legal entity name

entityAddress∗ String Legal entity’s street address
gps∗ Double[] Legal entity’s GPS coordinates
VAT∗ String Legal entity’s VAT number

capacity Double Commitment to maximum yearly SRD volume
capacityDate DateTime Date capacity was set
creditPercent Double % SRD acceptance for transactions above 1000

euroFee Double[] % fee on inter-circuit SRD sales, in EUR
(Optional MetaData)

firstName ∗ String First name
surName∗ String Surname

Table 6: Profile MetaData for the Welcome, Retail , and Company groups
(∗Indicates fields that can be modified by the user)

(∗∗Indicates fields that can be modified by the user but that are updated only at a fixed time interval)

INTERLACE Project (Grant no. 754494) 17

Group Profile MetaData Type Description

(Obligatory MetaData)
Full entityName∗ String Legal entity name

entityAddress∗ String Legal entity’s street address
gps∗ Double[] Legal entity’s GPS coordinates
VAT∗ String Legal entity’s VAT number

capacity Double Commitment to maximum yearly SRD volume
capacityDate DateTime Date capacity was set
creditPercent Double % SRD acceptance for transactions above 1000
rewardRate∗∗ Double % reward rate to consumer, in SRD

euroFee Double[] % fees on B2C EUR sales, inter-circuit SRD sales, in EUR
acceptanceRate∗∗ Double Rate of credits acceptance in consumer purchases

(Optional MetaData)
firstName∗ String First name
surName∗ String Surname

(Obligatory MetaData)
Employee firstName∗ String First name

surName∗ String Surname
employedBy String Name of legal entity employed by

(Obligatory MetaData)
On_Hold entityName∗ String Legal entity name

entityAddress∗ String Legal entity’s street address
gps∗ Double[] Legal entity’s GPS coordinates
VAT∗ String Legal entity’s VAT number

capacity Double Commitment to maximum yearly SRD volume
capacityDate DateTime Date capacity was set
creditPercent Double % SRD acceptance for transactions above 1000
rewardRate∗∗ Double % reward rate to consumer, in SRD

euroFee Double[] % fees on B2C EUR sales, inter-circuit SRD sales, in EUR
acceptanceRate∗∗ Double Rate of credits acceptance in consumer purchases

(Optional MetaData)
firstName∗ String First name
surName∗ String Surname

Consumer

(Obligatory MetaData)
Consumer_Verified firstName∗ String First name

surName∗ String Surname

(Obligatory MetaData)
MNGR entityName∗ String Legal entity name

entityAddress∗ String Legal entity’s street address
gps∗ Double[] Legal entity’s GPS coordinates
VAT∗ String Legal entity’s VAT number

creditPercent Double % SRD acceptance for transactions above 1000

Table 7: Profile MetaData for the Full , Employee, On_Hold , Consumer , Consumer_Verified , and MNGR groups
(∗Indicates fields that can be modified by the user)

(∗∗Indicates fields that can be modified by the user but that are updated only at a fixed time interval)

2.3.3 Transfer Types

As shown in Figure 2.3, the first test for transactability involves so-called Transfer Types.
Transfer Types are mathematical functions of the source groups (fromGroups) whose values
are sets of destination groups (toGroups). Referring to Figure 2.7, for the Group layer ‘source’
means the group where the money is coming from and ‘destination’ is the group where the money
is going, regardless of whether the operation is a Credit or a Debit.

There is one different function for each combination of ordered pairs (x , y), where x ∈
{credit , debit} and y ∈ {SRD ,EUR}, leading to four different functions. However, it is simpler
and also easier to implement to express them as a single function of 3 parameters. Formally,

TT : Operation × Currency ×Group → Powerset(Group), (2)

18 D3.1

where

Group = {Welcome,Retail ,Company ,Full ,Employee,On_Hold ,

Consumer ,Consumer_Verified ,MNGR}. (3)

With an abuse of notation and overloading the terminology we define for convenience the
following sets of target groups (toGroups) as different “transfer types”:

TT1 = {Retail}, TT2 = {Retail ,Company}, TT3 = {Company ,Employee}
TT4 = {Company}, TT5 = {MNGR}, TT6 = {Full}.

Through currying, Table 8 then shows the TT function as four sub-functions.

The Transfer Type test shown in Figure 2.3 involves checking whether the recipient (Seller)
of a Credit or Debit transaction in a given currency is in the range of the corresponding TT

function of the Buyer. In other words, the Buyer, or fromGroup member, is the independent or
input parameter to the function and appears in the left column in Table 8.

fromGroup TTTTTTCCCrrreeedddiiittt,SSSRRRDDD TTTTTTDDDeeebbbiiittt,SSSRRRDDD TTTTTTCCCrrreeedddiiittt,EEEUUURRR TTTTTTDDDeeebbbiiittt,EEEUUURRR

Welcome ∅ ∅ ∅ ∅

Retail ∅ TT5 ∅ ∅

Company TT3 ∪ TT5 ∪ TT6 TT4 ∪ TT5 ∪ TT6 ∅ ∅

Full TT3 ∪ TT5 ∪ TT6 TT4 ∪ TT5 ∪ TT6 ∅ ∅

Employee TT2 ∪ TT6 TT2 ∪ TT6 ∅ ∅

On_Hold ∅ ∅ ∅ ∅

Consumer ∅ ∅ ∅ TT1 ∪ TT6

Consumer_Verified TT1 ∪ TT6 TT1 ∪ TT6 ∅ TT1 ∪ TT6

MNGR TT3 ∪ TT5 ∪ TT6 TT4 ∪ TT6 ∅ ∅

Table 8: The Transfer Types function expressed as 4 separate sub-functions through currying

Note on Inter-Circuit Trade. Although inter-circuit operations are not formally modelled or specified in this
report (or in the Appendix), Table 8 is consistent with them. Briefly, if User 1 (U1) in Circuit 1 (C1) and User
2 (U2) in Circuit 2 (C2) wish to trade, in the current model they need to obtain permission to do so from a
broker. Assuming it is granted, U1 is the Buyer, and U2 is the Seller, the credits flow is

CCU1 → MIRRORMNGR1 followed by MIRRORMNGR2 → CCU2. (4)

Note that in this scenario MIRRORMNGR2 could go negative. Since no credits are exchanged between the
two MIRROR accounts, the difference in their balances reflects the balance of (CC) trade between the two
circuits. With this context, TT5 in the (Credit ,SRD) column, for the MNGR row, is needed to support a special
kind of inter-circuit operations, in which the MNGR of a given circuit buys or sells products or services from
the user in a different circuit. Assuming MNGR2 of C2 is buying a service from U1 in C1, for example, the
credits flow is

CCMNGR2 → MIRRORMNGR2 followed by MIRRORMNGR1 → CCU1. (5)

In all cases MNGR-MNGR transactions are implemented as Credit transactions, never as Debit.

2.3.4 Account Connectivity

Figure 2.12 shows the account connectivity function used for Test 2 in Figure 2.3. As for
Visibility, a ‘1’ indicates that the Source and Destination accounts are connected and funds can
be transferred from one to the other.

INTERLACE Project (Grant no. 754494) 19

CC

DOMU

MIRROR

Income

Prepaid

fromAcct:

toAcct:

CREDIT DEBIT

C
C DO
M
U

M
IR
RO

R

In
co

m
e

Pr
ep

ai
d

CC

DOMU

MIRROR

Income

Prepaid

0 0 - -
0 0 0 - -
0 0 -
- 0 0
- - - 0 0

C
C DO
M
U

M
IR
RO

R

In
co

m
e

Pr
ep

ai
d

1

- -
-

-
-
-

0
- - - 0 0

- -
0 0 - -

0
0

1

-
- 0 0
- - - 0 0

1

- -
-

1 -
-
-

0
- - - 0 0 0

1
1

Bisoo Bisoo

Bi
so

o

Bi
so

o

SRD

Currency

SRD

SRD

€

€

€

0 0

Topup Topup- - - 0 0

0

-
-
-

0
0
0 - - - 0 0

-
-
-

0
0
0

To
pu

p

To
pu

p

0

€ 00

fromAcct:

toAcct:

0

1

Fig. 2.12: Account connectivity for user-initiated transactions: Test 2 in Figure 2.3

CC

DOMU

MIRROR

Income

Prepaid

CREDIT DEBIT

C
C DO
M
U

M
IR
RO

R

In
co

m
e

Pr
ep

ai
d

CC

DOMU

MIRROR

Income

Prepaid

0 0 - -
0 0 0 - -
0 0 -
- 0 0
- - - 0 0

C
C DO
M
U

M
IR
RO

R

In
co

m
e

Pr
ep

ai
d

- -
-

-
-
-

0
- - - 0 0 0

- -
0 0 - -

0
0 -

- 0 0
- - - 0 0

- -
-

-
-
-

0
- - - 0 0Bisoo Bisoo

Bi
so

o

Bi
so

o

SRD

Currency

SRD

SRD

€

€

€

0 0

Topup Topup- - - 0 0

0

-
-
-

0
0
0 - - - 0 0

-
-
-

0
0

To
pu

p

To
pu

p

1

0

€

1 0 0
0
0

0

1
0

fromAcct:

toAcct:

fromAcct:

toAcct:

0
0

Fig. 2.13: Account connectivity for system-initiated and child transactions: Not a test, hard-wired.

Figure 2.13 shows a similar connectivity function for accounts that are controlled by SysAdmin.
In this case, however, this function does not imply a transactability test since the permissions are
hard-wired and SysAdmin does not need to test for transactability.

2.3.5 User Transactability Functions

Note: this section has no bearing on the implementation, it is included to help interpret Figure 2.7.

Figures 2.14-2.17 show a visualization of the interactions relevant to the “1-User” layer of Figure
2.7, filtered by the Account Connectivity constraints.

welcome

retail

company

employee

on_hold

consumer

w
el
co

m
e

re
ta
il

co
m
pa

ny

em
pl
oy

ee

on
_h

ol
d

co
ns

um
er

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 1 0 0 0

0 1 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 1 0 0 0 0

fromUser:

toUser:

fromUser:

toUser:

CREDIT DEBIT

consumer_verified

co
ns

um
er
_v
er
ifi
ed

MNGR

M
N
G
R

0 0 0 00 1 1

1

0
0

0
0
0
0

0 0 0 0 0full

fu
ll

0
0

1

0
0

0

1

1
11 11

welcome

retail

company

employee

on_hold

consumer

w
el
co

m
e

re
ta
il

co
m
pa

ny

em
pl
oy

ee

on
_h

ol
d

co
ns

um
er

0 0 0 0 0 0 0
0 0 0 0 0
0 0 1 1 0 0

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0consumer_verified

co
ns

um
er
_v
er
ifi
ed

MNGR 0 00 0 001

1

0
0

0
0
0
0

0 0 0 0full

fu
ll

0
0

1

0
0
0

1

11 11

1 1

1
0 0 0

0 0

1

M
N
G
R

{SDR, Service}

1

0

Fig. 2.14: User Transactability Function 1

20 D3.1

welcome

retail

company

employee

on_hold

consumer

w
el
co

m
e

re
ta
il

co
m
pa

ny

em
pl
oy

ee

on
_h

ol
d

co
ns

um
er

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

CREDIT DEBIT

consumer_verified

co
ns

um
er
_v

er
ifi
ed

MNGR

M
N
G
R

0 00 0 00

0
0

0
0
0
0

0 0 0 0 0full

fu
ll

0
0

0
0
0

welcome

retail

company

employee

on_hold

consumer

w
el
co

m
e

re
ta
il

co
m
pa

ny

em
pl
oy

ee

on
_h

ol
d

co
ns

um
er

0 0 0 0 0 0 0
0 0 0 0 0
0 0 1 1 0 0

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0consumer_verified

co
ns

um
er
_v

er
ifi
ed

MNGR 0 00 0 001

1

0
0

0
0
0
0

0 0 0 0full

fu
ll

0
0

1

0
0
0

1

11 11

1 1

1
0 0 0

0 0

1

M
N
G
R

0 0 0
0 0 0

0 0 0

0
0

0 0
00 0

{SDR, POS}

fromUser:

toUser:

fromUser:

toUser:

0

Fig. 2.15: User Transactability Function 2

welcome

retail

company

employee

on_hold

consumer

w
el

co
m

e

re
ta

il

co
m

pa
ny

em
pl

oy
ee

on
_h

ol
d

co
ns

um
er

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

CREDIT DEBIT

consumer_verified

co
ns

um
er

_v
er

ifi
ed

MNGR

M
N

G
R

0 00 0 0

0
0

0
0
0
0

0 0 0 0 0full

fu
ll

0
0

0
0
0

welcome

retail

company

employee

on_hold

consumer

w
el

co
m

e

re
ta

il

co
m

pa
ny

em
pl

oy
ee

on
_h

ol
d

co
ns

um
er

0 0 0 0 0 0 0
0 0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0consumer_verified

co
ns

um
er

_v
er

ifi
ed

MNGR 0 00 0 00

0
0

0
0
0
0

0 0 0full
fu

ll

0
0

0
0
0

1
0

1
0 0 0

0 0

M
N

G
R

0 0 0
0 0 0

0 0 0

0
0

0 0
01* 1*

* This transaction is initiated by SysAdmin, not within the scope of MNGR

0
0

1
0

1
0

0 00
0 0

0

00 0

{EUR, Service}

fromUser:

toUser:

fromUser:

toUser:

1*

Fig. 2.16: User Transactability Function 3

welcome

retail

company

employee

on_hold

consumer

w
el
co

m
e

re
ta
il

co
m
pa

ny

em
pl
oy

ee

on
_h

ol
d

co
ns

um
er

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

CREDIT DEBIT

consumer_verified

co
ns

um
er
_v

er
ifi
ed

MNGR

M
N
G
R

0 00 0 0

0
0

0
0
0
0

0 0 0 0 0full

fu
ll

0
0

0
0
0

welcome

retail

company

employee

on_hold

consumer

w
el
co

m
e

re
ta
il

co
m
pa

ny

em
pl
oy

ee

on
_h

ol
d

co
ns

um
er

0 0 0 0 0 0 0
0 0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0consumer_verified

co
ns

um
er
_v

er
ifi
ed

MNGR 0 00 0 00

0
0

0
0
0
0

0 0 0full

fu
ll

0
0

0
0
0

1
0

1
0 0 0

0 0

M
N
G
R

0 0 0
0 0 0

0 0 0

0
0

0 0
0

0
0

1
0

1

0
0 00
0 0

0

00 00 00

{EUR, POS}

fromUser:

toUser:

fromUser:

toUser:

Fig. 2.17: User Transactability Function 4

INTERLACE Project (Grant no. 754494) 21

2.3.6 Group Transactability Functions

Note: this section has no bearing on the implementation, it is included to help interpret Figure 2.7.

Figures 2.18-2.21 show a visualization of the interactions relevant to “2-Group” layer of Figure
2.7, filtered by the Account Connectivity constraints. In other words, the effect of the Transfer
Types test together with the Account Connectivity test results in what we call the Group
Transactability Function (GTF). Since there are 4 combinations of currency and channel, there
are 4 different GTFs. There is no need to use them as an additional test, since they do not
add anything new to Tests 1 and 2 of Figure 2.3. However, it is still useful to include them
here as another visualization of these first two tests of the Permissioning workflow. For the
mathematically-minded reader, it may be interesting to note that the Debit adjacency matrices
for the GTFs are the Transpose of the Debit adjacency matrices for the UTFs. Another potentially
useful visualization of the UTF and GTF matrices would be as 16 directed graphs over the 9 nodes
representing the groups.

welcome

retail

company

employee

on_hold

consumer

w
el
co

m
e

re
ta
il

co
m
pa

ny

em
pl
oy

ee

on
_h

ol
d

co
ns

um
er

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 1 0 0 0

0 1 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 1 0 0 0 0

fromGroup:

toGroup:

CREDIT

consumer_verified

co
ns

um
er
_v
er
ifi
ed

MNGR

M
N
G
R

0 0 0 00 1 1

1

0
0

0
0
0
0

0 0 0 0 0full

fu
ll

0
0

1

0
0

0

1

1
11 11

{SDR, Service}

1

fromGroup:

toGroup:

DEBIT

welcome

retail

company

employee

on_hold

consumer

w
el
co

m
e

re
ta
il

co
m
pa

ny

em
pl
oy

ee

on
_h

ol
d

co
ns

um
er

consumer_verified

co
ns

um
er
_v
er
ifi
ed

MNGR

full

fu
ll

M
N
G
R

0 0 0 0 0 0 0
0 00 0 0
0 0 1 0 0

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 00

0
0

0
0
0
0

0 0 0 0

0
0

0
0

1

10

0

0
0 0

0

0

11
1 1

1 1 1

1 1
1 1
0

Fig. 2.18: Group Transactability Function 1

welcome

retail

company

employee

on_hold

consumer

w
el
co

m
e

re
ta
il

co
m
pa

ny

em
pl
oy

ee

on
_h

ol
d

co
ns

um
er

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

CREDIT

consumer_verified

co
ns

um
er
_v
er
ifi
ed

MNGR

M
N
G
R

0 00 0 00

0
0

0
0
0
0

0 0 0 0 0full

fu
ll

0
0

0
0
0

0 0 0
0 0 0

0 0 0

0
0

0 0
00 0

{SDR, POS}

fromGroup:

toGroup:

fromGroup:

toGroup:

DEBIT

welcome

retail

company

employee

on_hold

consumer

w
el
co

m
e

re
ta
il

co
m
pa

ny

em
pl
oy

ee

on
_h

ol
d

co
ns

um
er

consumer_verified

co
ns

um
er
_v
er
ifi
ed

MNGR

full

fu
ll

M
N
G
R

0 0 0 0 0 0 0
0 00 0 0
0 0 1 0 0

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 00

0
0

0
0
0
0

0 0 0 0

0
0

0
0

1

10

0

0
0 0

0

0

11
1 1

1 1 1

1 1
1 1

0

Fig. 2.19: Group Transactability Function 2

22 D3.1

welcome

retail

company

employee

on_hold

consumer

w
el

co
m

e

re
ta

il

co
m

pa
ny

em
pl

oy
ee

on
_h

ol
d

co
ns

um
er

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

CREDIT

consumer_verified

co
ns

um
er

_v
er

ifi
ed

MNGR

M
N

G
R

0 00 0 0

0
0

0
0
0
0

0 0 0 0 0full

fu
ll

0
0

0
0
0

0 0 0
0 0 0

0 0 0

0
0

0 0
01* 1*

* This transaction is initiated by SysAdmin, not within the scope of MNGR

{EUR, Service}

fromGroup:

toGroup:

1*

DEBIT

welcome

retail

company

employee

on_hold

consumer

w
el

co
m

e

re
ta

il

co
m

pa
ny

em
pl

oy
ee

on
_h

ol
d

co
ns

um
er

consumer_verified

co
ns

um
er

_v
er

ifi
ed

MNGR

full

fu
ll

M
N

G
R

fromGroup:

toGroup:

0 0 0 0 0 0 0
0 00 0
0 0 0

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 00 0 00

0
0

0
0
0
0

0 0 0

0
0

0

0

0 0 0

0

0
0

00
0 0

0
0 0

0

00 0

0 0

11
1 1

0

0

Fig. 2.20: Group Transactability Function 3

welcome

retail

company

employee

on_hold

consumer

w
el
co

m
e

re
ta
il

co
m
pa

ny

em
pl
oy

ee

on
_h

ol
d

co
ns

um
er

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0

CREDIT

consumer_verified

co
ns

um
er
_v
er
ifi
ed

MNGR

M
N
G
R

0 00 0 0

0
0

0
0
0
0

0 0 0 0 0full

fu
ll

0
0

0
0
0

0 0 0
0 0 0

0 0 0

0
0

0 0
00 00

{EUR, POS}

fromGroup:

toGroup:

DEBIT

welcome

retail

company

employee

on_hold

consumer

w
el
co

m
e

re
ta
il

co
m
pa

ny

em
pl
oy

ee

on
_h

ol
d

co
ns

um
er

consumer_verified

co
ns

um
er
_v
er
ifi
ed

MNGR

full

fu
ll

M
N
G
R

fromGroup:

toGroup:

0 0 0 0 0 0 0
0 00 0
0 0 0

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 00 0 00

0
0

0
0
0
0

0 0 0

0
0

0

0

0 0 0

0

0
0

00
0 0

0
0 0

0

00 0

0 0

11
1 1

0

0

Fig. 2.21: Group Transactability Function 4

2.3.7 Transaction MetaData

The transaction meta-data consists of only 1 memo message that is to be implemented as part
of the transaction. It is not obligatory, i.e. the initiator of the transaction can leave it blank. The
length is to be determined at the time of implementation but the assumption is that it is “long
enough” to support a reasonable description of the transaction.

2.3.8 Account MetaData

Tables 9 and 10 are also organized in terms of obligatory and optional meta-data, where the latter
are modifiable by the user. At the implementation stage, for example, the modifiable fields can be
included together with the profile meta-data. The fields that can be set by the user are indicated
with an asterisk.

INTERLACE Project (Grant no. 754494) 23

Account Account MetaData Type Description

(Obligatory MetaData)

CC accountID Integer Unique account identifier

memberID String ProfileID of account owner

unit String Account currency

balance Double Account balance (positive or negative)

creditLimit Double Credit limit (positive number)

creditLimitDate DateTime Date at which credit limit was set

availableBalance Double balance + creditLimit (non-negative number)

upperLimit Double Upper balance limit (positive number)

availableCapacity Double capacity − saleVolume (non-negative number)

(Optional MetaData)

lowBalanceAlert∗ String Alert if (creditLimit + balance) < lowBalanceAlert buffer

highBalanceAlert∗ String Alert if (upperLimit − balance) < highBalanceAlert buffer

highVolumeAlert∗ String Alert if (capacity − saleVolume) < highVolumeAlert buffer

(Obligatory MetaData)

DOMU accountID Integer Unique account identifier

memberID String ProfileID of account owner

unit String Account currency

balance Double Account balance (positive or negative)

creditLimit Double Credit limit (positive number)

creditLimitDate DateTime Date at which credit limit was set

availableBalance Double balance + creditLimit (non-negative number)

(Obligatory MetaData)

MIRROR accountID Integer Unique account identifier

memberID String ProfileID of account owner

unit String Account currency

balance Double Account balance (positive or negative)

creditLimit Double Credit limit (positive number)

creditLimitDate DateTime Date at which credit limit was set

availableBalance Double balance + creditLimit (non-negative number)

upperLimit Double Upper balance limit (positive number)

availableCapacity Double capacity − saleVolume (non-negative number)

(Optional MetaData)

lowBalanceAlert∗ Double Alert if (creditLimit + balance) < lowBalanceAlert buffer

highBalanceAlert∗ Double Alert if (upperLimit − balance) < highBalanceAlert buffer

highVolumeAlert∗ String Alert if (capacity − saleVolume) < highVolumeAlert buffer

Income accountID Integer Unique account identifier

memberID String ProfileID of account owner

unit String Account currency

balance Double Account balance (positive or negative)

Table 9: MetaData for CC , DOMU , MIRROR, and Income accounts
(∗Indicates fields that can be modified by the user)

24 D3.1

Account Account MetaData Type Description

(Obligatory MetaData)

Prepaid accountID Integer Unique account identifier

memberID String ProfileID of account owner

unit String Account currency

balance Double Account balance (positive or zero)

creditLimit Double Credit limit (Value can only be 0!)

(Optional MetaData)

lowBalanceAlert∗ Double Alert if (creditLimit + balance) < lowBalanceAlert buffer

Bisoo accountID Integer Unique account identifier

memberID String ProfileID of account owner

unit String Account currency

Topup accountID Integer Unique account identifier

memberID String ProfileID of account owner

unit String Account currency

Table 10: MetaData for Prepaid , Bisoo, and Topup accounts
(∗Indicates fields that can be modified by the user)

2.4 Account Limit Tests

The account limit tests are specified abstractly in D2.1. In the context the description of this
chapter, which is closer to the implementation, they are fairly obvious by looking at Figures 2.5
and 2.6. The important thing is that they need to be enforced before a transaction is completed.
If one of the tests fails the transaction is not executed and the user must be alerted.

The alerts, on the other hand, can be issued after a transaction that came close to a limit but did
not cross it, if the resulting balance or sale volume exceeds the buffer limits.

Chapter 3

Introduction to the CoreASIM Language, Interpreter, and ICEF

Eduard Hirsch

This chapter provides an overview of the technologies used for running the INTERLACE
Specification. At the beginning a quick-start description is provided in order make it easier to
jump right into the execution of the model. Additional details about how the executable models
of Abstract State Interaction Machine (ASIM) specifications function in the environment are
discussed, along with how this can happen in a simple and stable manner.

There are two base environments available – one based on Docker (henceforth ‘docker’) and one
based on Vagrant (henceforth ‘vagrant’). During project execution, the focus shifted from the
vagrant environment, which can be downloaded from GitHub,2 to a docker-based version which
is explained in Section 3.1.2 and is also available on GitHub.3 Nevertheless, the vagrant setup is
still explained for those developers who prefer it.

3.1 Virtualization Environments

3.1.1 Quick-Start Vagrant

The vagrant definition provides a running environment for executing the INTERLACE ASIM
definitions. During the provisioning process an Ubuntu vagrant box is set up. All the necessary
components are installed in that box, which clones and builds the Interaction Computing
Execution Framework (ICEF) framework4 as well as the ASIM Specification5 into the data
directory where it is finally ready for use.

Prerequisites. Download and install the following software products:

Virtual Box: https://www.virtualbox.org/

git: https://git-scm.com/downloads

Vagrant: https://www.vagrantup.com/

Clone Environment. To clone the ASIM vagrant environment from github into a directory git
can be utilized:

git clone https://github.com/InterlaceProject/ASIMVagrantEnvironment.git

Execution. Once all software components are installed and the vagrant definitions are cloned it
is possible to call

./execute.sh

2 https://github.com/InterlaceProject/ASIMVagrantEnvironment
3 https://github.com/InterlaceProject/ASIMDockerEnvironment
4 https://github.com/biomics/icef
5 https://github.com/InterlaceProject/ASIMSpec

https://www.virtualbox.org/
https://git-scm.com/downloads
https://www.vagrantup.com/
https://github.com/InterlaceProject/ASIMVagrantEnvironment
https://github.com/InterlaceProject/ASIMDockerEnvironment
https://github.com/biomics/icef
https://github.com/InterlaceProject/ASIMSpec

26 D3.1

from the main directory in order to run the INTERLACE specifications. Note: when using
Windows it is necessary to start that command within git-bash which needs to run in elevated
admin mode (right click → start as administrator). That is necessary to handle symbolic links in
git-bash.

On the very first execution the script is provisioning a virtual machine based on Ubuntu by
calling vagrant up, which may take some time. Subsequent calls will be much faster. A detailed
description explaining the precise process is covered in Section 3.4.

Once the execution is started it will run until it is stopped by pressing ctrl + c or by calling

./stop.sh

from any other console window.

3.1.2 Quick-Start Docker

The docker project on GitHub6 is also based on virtualization like the vagrant environment, but
emphasizes Operating System virtualization instead of Hardware virtualization [6].

Prerequisites.

install docker

install git (including git bash for windows)

On Linux machines it is important to add the current user to the docker group in order to manage
docker container and images. Otherwise all further explained commands need to be executed as
root or with sudo.

For Windows machines use git-bash to execute the commands described in the following sections.

Before First Execution. In order to configure the environment it is necessary to call the
following script:

./configure

This will generate a docker container image called asim where all the necessary frameworks are
built and prepared for execution of the specifications. The ICEF framework as well as the ASIM
model specifications are cloned outside of the container to simplify development.

Execute Specification. The container image asim created during the configuring step can be
started by calling

./execute

A container started in this way is called active_asim and runs all the necessary steps, like starting
an ICEF manager as well an ICEF brapper to run the ASIM specifications.

Like the Vagrant environment, a running execution may be stopped by pressing ctrl + c.

6 https://github.com/InterlaceProject/ASIMDockerEnvironment

https://github.com/InterlaceProject/ASIMDockerEnvironment

INTERLACE Project (Grant no. 754494) 27

3.1.3 Container and Virtual Machine-Based Environments

Figure 3.1 shows two virtualization techniques. They have similar approaches to how to isolate
and allocate resources. However, they function very differently because a container reaches
virtualizsation over splitting an operating system resources and a virtual machine virtualizes
hardware on which a whole operating system runs.

Infrastructure

Host OS

Infrastructure

Hypervisor

Container OS/Runtime

Bins/Libs Bins/Libs Bins/Libs

App B App CApp A

Container

Bins/Libs Bins/Libs Bins/Libs

App B App CApp A

VM

Guest OS Guest OS Guest OS

Fig. 3.1: Container versus Virtual Machine

As a consequence, containers can be much smaller, more portable, and in most of the cases also
much faster because they are using the system resources more directly and not as wastefully as
a virtual machine does.

To be more specific, containers package their libraries and binaries together with an application.
Therefore, each container can run in parallel with other containers on the same machine, sharing
the OS kernel and each running in an isolated process in user space as if it were a separate OS.
Therefore containers have the ability to start instantly, because the operating system they are
using is already up and running. Also, they are much smaller as they don’t need to carry all the
OS-specific software parts.

In contrast, virtualized machines run on an abstraction of the physical hardware which is
present in the system. That means that a hypervisor doubles, triples, ... the hardware virtually
and allows to install full versions of an operating system compatible with the current system. As
each virtualization is a full copy of an OS, images are much larger and boot times most of the
time are much slower. Nevertheless, a full operating system might have benefits in some cases
over a containerized system.

Coming back to the INTERLACE environments those two approaches reflect the two approaches
used for creating the environments. Vagrant is a controlling command line client for hypervisors
(virtual machines) and docker is a command line client for a container-based virtualization system
with the same name.

INTERLACE development efforts are drawn towards the docker environment because execution
and starting of the ASIMSpecs is faster and the project is easier to maintain.

28 D3.1

3.2 Execution Environment Stack

Regardless of the virtualization techniques used, a consistent base system is used. Therefore,
both docker and vagrant are provisioning a Linux-based operating system. In this case the Ubuntu
16.04 LTS (Long Term Support) distribution is used. This consistent, stable, and reliable structure
will be important later when considerations about provability as well as testability become
relevant; namely, that design always provides the same preconditions and anybody executing
or testing against the specification will obtain the same results.

3.2.1 Software Stack

The Ubuntu 16.04 LTS distribution needs to be enhanced and updated consistently with the
needs of an ASIM executing machine as well as with the needs of developers working with this
virtual system. More specifically, the following components are installed during the provisioning
process:

curl → Is a tool for querying REST resources and is used for downloading packages from
various online repositories.
nodejs → Is a JavaScript runtime environment built on Chrome’s V8 engine and includes
the package manager npm. This bundle is necessary for installing and running the Manager
component of ICEF.
build-essential → These packages are needed to compile a debian-based package and
provide help for building (compiling, packaging, etc) the project sources.
maven → Is a well-known Java build and packaging tool and is used for building the ICEF
framework as well as the CoreASIM Eclipse plugin.
vim→Well-known U/Linux editor which acts as helper for quick development or configuration
issues inside the environment.
git → Distributed Version-Control System which helps download source repositories from
GitHub.
Java 8 → Programming Language used for CoreASIM’s base system implementation; thus,
also for running ASIM instances.

3.2.2 Provisioning Process

The provisioning process can be separated into 3 steps which are executed when .configure for
docker or vagrant up for vagrant is called from the command line:

1. Download ASIMSpec and ICEF from GitHub
2. Install the software packages mentioned in Section 3.2.1
3. Build the ICEF framework and prepare a virtual machine for execution

For development purposes the ASIMSpec and the ICEF frameworks are cloned into directories
which are available from the host machine and the virtual guest machine. This is necessary
because then it is possible to directly edit the source or debug from outside and execute the code
from within the container. Consequently it is not necessary to copy the code into the container
when changes are carried out.

For vagrant, a shared folder is configured over the vagrant file shown here:

...

INTERLACE Project (Grant no. 754494) 29

config.vm.synced_folder "./data", "/vagrant-data"
...

This directive refers to the fact that the folder data is used on the host system and a folder
vagrant-data is mounted on the guest system. These folders are shared and thus contain the
same content. Additionally, during provisioning a symbolic link in the home directory is created
called project (/home/ubuntu/project), which links the mounted root folder /vagrant-data.

When the virtual machine is stopped the data directory on the host is kept and can still be
manipulated or executed (of course only if the framework dependencies are installed on the host
as well).

For docker, first all GitHub sources need to be cloned to the host machine, and only then can
files be shared into the guest container by using the command line option "-v"

docker run -v "$1/ASIMSpec:/home/ASIMSpec" \
-v "$1/icef:/home/icef" \
--name active_asim -it asim /$2

This line is part of the script scripts/runDocker .sh where "$1" denotes a bash variable and
contains the first command-line parameter of this script. That parameter is used to declare
the directory location of the environment. The second command-line parameter "$2" normally is
defaulted to the main execution script (executeASIMSpec.sh) and started inside a running docker
instance. It is important to note that the ASIMSpec folder of the host machine is mounted into7

/home/ASIMSpec of the docker container and the icef directory is mounted into /home/icef .

3.2.3 Execution

The building block view in Figure 3.2 shows how an ICEF specification is submitted to the
environment where it needs to be instantiated for it to be executed. The details will be covered
in Section 3.3. In this part of the document we take a look at which services are started and how.

Due to limitations of the ICEF framework it is currently not possible to cleanly shut down a
running ICEF simulation with several running ASIM instances. Therefore the whole environment
has to be restarted including all services for every execution in order to guarantee a correct
set-up. This is achieved and granted by the docker service which offers a base operating system
image that is started for every single execution of the Interlace specification from scratch. That
base OS-image is not changed and always starting from the same state when instantiated.

Start Services Processes. Both environments offer a script that needs to be called from
the host system (execute(.sh)) and one that needs to be called from within the virtualized
machine (executeASIMSpec.sh/executeOnGuest .sh). Whereas the script on the virtualized system
only differs in directory references the outside scripts have to handle different things as one
script deals with docker and the other with vagrant.

In more detail, docker can start the servers immediately and run the script inside the container,
whereas vagrant needs to add an additional step if the virtual machine is not up and running yet.
Thus, vagrant

1. tries to start the server processes and to submit the specifications;

7 "Mounted into" refers to the fact that a local folder from a local host computer is available inside the virtualized
docker system and accessible there as a mounted directory.

30 D3.1

2. if the first step fails, the script checks if the virtual machine is running. If it isn’t, the script
tries to (re-)start it;

3. when the restart is successful the first step is retried.

If we focus on the first step, which is basically the same in both environments, we can discuss
in detail how the process continues. Thus, on the guest system we are first running a so-called
CASIMA, which is short for CoreASIM Manager 3.3. This manager takes care of ASIM states,
scheduling, and also acts as messaging backbone.

Next, a second service process is started. The service is a wrapper for the CoreASIM imple-
mentation and its name is Brapper (BIOMICS wrapper). This Brapper service executes enhanced
ASIM code named BSL that offers additional language primitives specifically designed during the
BIOMICS project to include interaction features for decentralized and distributed computational
systems inspired by and modelled on biochemical systems.

When a Brapper starts, it needs to register with a manager instance. As described in Section
3.3, it is possible to start multiple Brappers. Once a simulation is submitted to the manager,
the manager distributes the different simulations, including their ASIMs, to different Brapper
services to execute them there, while trying to spread the load equally.

For the sake of simplicity the environment starts only one Brapper by default. In the final
implementation it will be possible to specify the number of Brappers to be used for execution.

Submit ICEF definition file. Finally, after the service processes are running it is possible to
submit a specification file to the manager. This is done by executing a bash script which calls a
nodejs client:

...
node loadICEF.js $project/ASIMSpec/run.icef localhost 9090
...

The above listing uses a $project variable containing the path of ASIMSpec to find the ICEF
specification. By convention the ICEF definition file of the ASIM Specification is called run.icef
to clearly identify the entry point for the environment. The last two parameters for the script are
the host and the port where the manager service is running and waiting for requests, respectively.

3.2.4 Development

For developing new simulations it is important to have a proper development environment. There
exist many different IDE/Tool/Debugger choices for Java and JavaScript which may be used for the
Brapper, Manager, or coreAS(I)M plugin development. However, there are only limited Integrated
Development Environment (IDE) choices for implementing AS(I)Ms.

For the well-known Eclipse IDE, developers of the ICEF framework have adopted the coreASM
plugin for supporting the additional language primitives. So when implementing ASIMs using
BSL it is highly recommended to use that plugin. It works with the new language elements (BSL)
and is provided by the ICEF framework directly, but it needs to be built and imported manually
into Eclipse. Thus, for working with ASIM implementations of INTERLACE you ideally DO NOT
download the original CoreASM Plug-in package which is available at the marketplace of Eclipse.

Importing/Installation of the IDE Eclipse plugin for CoreASIM

INTERLACE Project (Grant no. 754494) 31

Build Framework. To add the ASIM plugin to Eclipse the CoreASIM plugin needs to be built and installed
manually first because it is not downloadable from the Eclipse marketplace and is only available as a
source version delivered with the ICEF framework and as part of the CoreASIM engine. Building and
installing can be done by calling

cd icef/coreASIM/org.coreasim.parent && mvn package install
cd icef/coreASIM/org.coreasim.eclipse && mvn package install

Note that the ICEF directory is placed in different folders in the two environments!

Install Plugin Development Environment in Eclipse. To install the ASIM plugin it is necessary to first
add another plugin called Eclipse PDE (Plugin Development Environment) from the marketplace for the
current Eclipse installation or get a distribution which already contains that plugin.

Import Plugin as Project. Next, the plugin needs to be imported to the workspace, which can be done
in Eclipse using the import wizard. To reach the wizard go to "File" → "Import...", search for "Existing
Projects into Workspace" and click to get to "Import Project" Window. Then click "Finish" to import the
project.

Dry-Run Eclipse with CoreASIM Plugin. This optional step can be done to check if the plugin is working
correctly. For that it is possible to right-click the imported Eclipse project and go to “Run As”→ "Eclipse
Application". Then a second Eclipse instance is started but this time a new tab should appear named
“CoreASIM”. In addition, when opening a file with extension casim the ASIM definition should be syntax-
highlighted.

Enable the Plugin. If the (optional) dry-run has been successful the export wizard will export the plugin
into the running Eclipse installation by opening "File" → "Export" then choosing "Deployable plugins
and fragments" in the new Dialog. The window which is opened next will offer to export fragment
org.coreasim.eclipse by selecting the checkbox next to it. Before clicking "Finish", the combo box "Install
into host" has to be chosen.

Once these steps have been completed, upon restart Eclipse will offer a new tab in the top menu
bar called "CoreASIM".

Note on the installation: When using the docker-Environment you could skip the first Build
Framework step, because all the necessary build steps are covered by the initial configuration
script. Also a separate installation of the Eclipse plugin Development Environment (PDE) might
be omitted because it usually comes in a bundle with most standard J2EE installations of Eclipse.

Notes on the Docker Environment

Normally the ASIM Specifications are started by calling execute from the main directory. This
starts a script which will run the required services and then send the ICEF definition. When
stopping the container it instantly goes back to its original state before execution. Only the shared
directories ASIMSpec and ICEF will retain the changes.

If it is necessary or convenient, for example if the host is missing development packages (e.g.
maven, nodejs, ...) which are available inside the container, it is possible to work from within the
container by calling

./execute /bin/bash

which starts the docker container, runs a bash shell instead of the starting script, keeps the
STDIN open, and connects a pseudo TTY. In this way it is possible to work with the container’s
bash shell, which can be seen as analogous to connecting to a remote shell over SSH.

32 D3.1

3.3 ICEF - The Interaction Computing Execution Framework

The interaction framework wraps the original coreASM framework in order to extend it and
give it the capabilities to support concurrent and distributed computation. It was developed in a
project called BIOMICS and financed by the European Commission.8

This wrapping took place on three levels:

First, the interpreter coreASM had to be extended supporting additional language primitives as well as
communications features. Here BSL replaces ASM as a new language having a new interpreter CoreASIM.

Second, a space was created where the now so-called Abstract State Interaction Machines (ASIMs) take over
and are able to execute in parallel. This environment is called Brapper (short for BIOMICS Wrapper).

Third, a central server called manager takes care of handling distributed Brapper instances, dealing with
message and scheduling issues.

In terms of technology, the development of CoreASIM involved making changes to the Java
coreASM implementation. Brappers are written in Java as well but the managers coordinate
the Brappers using nodejs and are therefore written in JavaScript.

3.3.1 Framework Stack

We now describe in more detail the aspects of the ICEF framework stack that concern the
INTERLACE implementation. Figure 3.2 shows the stack at different levels of granularity.

As a stable base for the INTERLACE execution environment stack we chose a Linux-based system,
Ubuntu 16.04 LTS. A LTS (Long-Term Support) version is important to ensure that we have a
reliable platform that is maintained by the distributor for a long time. Ubuntu publishes LTS
versions every two years and promises a maintenance duration of five years.9

After installation of the software described in Section 3.2.1 and after building the ICEF
components, the framework is ready. When the components are started it is possible to transmit
a running definition, called ICEF JSON file.

Listing 3.1 shows what the specification for a simulation may look like. An id for the simulation is
given, along with one scheduler and one ASIM. The schedulers section normally only hosts one
scheduler which takes care of other active or suspended ASIM agents. The asims attribute in the
JSON file defines the actual ASIM instances running the simulation.

Side note: A definition for the client here is not given because the client, which sends credit,
debit or other requests, is spawned and destroyed on demand by the Scheduler ASIM defined in
casim/scheduler.casim.

Detailed descriptions of parameters and options of the JSON ICEF specifications can be found in
Deliverable D5.2 [5] of the BIOMICS project.

8 http://biomicsproject.eu/
9 https://www.ubuntu.com/info/release-end-of-life

http://biomicsproject.eu/
https://www.ubuntu.com/info/release-end-of-life

INTERLACE Project (Grant no. 754494) 33

1 {
2 "id": "interlace",
3 "schedulers": [{
4 "file": "casim/scheduler.casim",
5 "start": true
6 }],
7 "asims": [{
8 "file": "casim/server.casim",
9 "start": true

10 }]
11 }

Listing 3.1: Example ICEF JSON Specification

The implementation idea here is to have a central server which takes over the various requests
from the clients. A scheduler will take care of what exactly is running, and when. As a second
task the scheduler will, as mentioned before, also spawn new clients which send or receive
information/requests to other components, but mainly to the server.

This centralized client-server architecture is a reflection of the need to replicate some of the
functionality of the current platform, which is based on a centralized relational database. Thus,
when the centralized database is replaced with a blockchain backend the business logic should
remain the same, at least at first, even though ASIMs work independently and a set of interacting
ASIMS can be distributed over a network and be running at different locations.

The Submission Process of the run.icef works as follows:

Loading and parsing of the ICEF-File initializes the process. Using that specification file a node.js com-
ponent transmits the structure to the manager server process which acts as the central managing and
communication node.

Starting Simulation on the manger service process. During that process the service registers a new
simulation and all components necessary for managing the different resources like messaging.

Distribute ASIMs. When simulations are initialized requests are sent to one or more Brappers in order to
start up the actual running instances of the ASIM agent.

Run. Finally, when all ASIM instances are running the simulation is successfully executing till stopped from
the outside or by a problem during execution.

Figure 3.2 illustrates on different levels of detail which components and services are active and
necessary to get the processes described above to run an ASIM simulation and, in the case of
INTERLACE, the model specification.

3.3.2 CoreASIM

The very core of the ICEF is an engine which was developed by different people at different
universities10 and implements a language called ASM. This language is based on Abstract State
Machines [2, 1], which is used as a methodology for high-level system engineering, design, and
analysis. This engine, called coreASM, was enhanced by the BIOMICS project in order to simulate
computer interactions on a logic-based programming language.

The resulting engine is called CoreASIM and includes the interaction features that were missing
in coreASM [4][5]. CoreASIM replaces the ASM language with the BIOMICS Specification
Language (BSL). The changes from the original framework also comprise of:

10 https://github.com/CoreASM/coreasm.core/wiki/About-CoreASM

https://github.com/CoreASM/coreasm.core/wiki/About-CoreASM

34 D3.1

Ubuntu 16.04 LTS

ICEF

ICEF
Manager

Brapper1 Brapper1 Brappern

Manager

R
ESTfu

l In
terface

Brapper1-nUpdate ASIM

A
SIM

 Sta
te

1

A
SIM

 Sta
te

2

A
SIM

 Sta
te

n

...

Channel Brapper

C
h

a
n

n
el1

C
h

a
n

n
el2

C
h

a
n

n
eln

...

Scheduler ASIM

Sch
ed

u
le

r
1

Sch
ed

u
le

r
2

Sch
ed

u
le

r
n

...

Router

ASIM1-n

ASM-Scheduler

Ext. coreASM
Engine API

A
ge

n
t1

A
ge

n
t2

A
ge

n
tn...

Fig. 3.2: ASIM Execution Environment Overview

INTERLACE Project (Grant no. 754494) 35

interaction possibilities
abstract shared storage
mailing system
full scheduler
interpreter enhancements

As this document provides an overview only on the CoreASIM features, just the most important
implementations are described here; namely, the mailbox and the scheduling system.

The mailing system is easy to use and can be described as follows:

An ASIM asim1 can send a message to another ASIM asim2 by using the Send Message
rule.

send Element to "asim_2" with subject "a subject"

Where the Element can be any of the element locations used in the ASIM language space
– even, for example, program(self).

The scheduler has the ability to coordinate different local agents to ensure that they act
in a predictable and appropriate way. Like the coreASM scheduler, CoreASIM implements a
controlling mechanism at a higher level. At the beginning of each running step, a scheduler
takes the defined scheduling policy and uses it to determine a set of local agents which will be
signalled to run their program. There are different BSL constructs to do so.

Here are two examples:

forall a in Agents do schedule a

Tells the scheduler to run all agents in Agents. If, by contrast, a single agent should be
selected based on a condition cond met by an agent a, the corresponding rule might look
like this:

choose a in Agents with cond(a) do schedule a

3.4 Model Execution Environment Details

This section describes the docker environment in depth, how the scripts prepare/build the
environment, and what is needed to finally execute the INTERLACE Model Specifications
described by run.icef of the ASIMSpecs.

Starting from the directory structure in Figure 3.3, a detailed picture can be drawn. Based
on performance and development considerationss docker was chosen in favour of the vagrant
environment. Although scripts of the two environments are quite similar we focus on docker.

3.4.1 Environment Configuration

A crucial step for initializing a proper environment is the so-called provisioning of the docker
Environment. The configure bash script handles this process. The script is prepared to be
executed on Mac, Windows (using git bash), and Linux. It was tested with the docker community
edition. It was not yet tested with the boot2docker environment and therefore might have
problems during the provisioning process. Figure 3.4 shows the configuration process.

36 D3.1

Docker Environment

configure

Dockerfile

execute

README.md

scripts

asimrc

buildICEFDocker.sh

executeASIMSpec.sh

runDocker.sh
Fig. 3.3: Docker Environment File Structure

Check for
ASIMSpec

ASIMSpec
Source check for

ICEF framework

fetch
ASIMSpec

From
GitHub

update from
GitHub

if out of date

Build Docker
Container

everthing up
To date

everything
up-to-date

update from
GitHub

Mark ICEF
for build

fetch from
GitHub

marked
for build

no build
Start

ICEF build

ready-to-use
docker container

with built ICEF
framework

Fig. 3.4: Docker Configuration Process

Summarizing this process, the script tries to fetch the ASIMSpecs as well as ICEF from
GitHub, builds the docker container and finally builds the ICEF framework if necessary. The
ICEF framework build is done by the bash script in directory script/buildICEFDocker.sh and is
executed inside the container.

INTERLACE Project (Grant no. 754494) 37

Building the docker container is a core part of this process, in which the most important
tools and packages are installed. These software packages are listed in Section 3.2.1 in detail.
Docker uses a file called Dockerfile, listed in Figure 3.3, to know how the container is provisioned.
The file contains several commands which are executed in a playbook-like manner to produce a
deterministic system environment.

3.4.2 Execute the ASIM Specifications

After the environment has been configured the INTERLACE specifications are ready to be
executed. This can be done by calling the execute script, which starts the prepared docker
container and initializes a process illustrated in Figure 3.5.

This process tries to make development as well as instant executing easier by starting a manager,
one brapper, and submitting the ICEF definitions using a single script.

start Manager

Manager
RUNNING

start and register
Brapper

Brapper
RUNNING

submit ICEF JSON
specification

SPECIFICATIONS
RUNNING

Manager and Brapper
are shut down,

execution is stopped

CTRL + C
or

sending stop command

Fig. 3.5: Docker Execution Process

38 D3.1

Note on service locations: In directory scripts of Figure 3.3 a file called asimrc can be found
which acts as a central setup file for configuration and execution and contains the main service
locations in the containerized Ubuntu system.

Chapter 4

CoreASIM Implementation of the INTERLACE Business Logic

Eduard Hirsch, Maria Luisa Mulas and Paolo Dini11

This chapter describes the ASIM implementation of the INTERLACE business logic according to
the specifications of Deliverable D2.1 [3], the requirements specification refinement presented
in Chapter 2, and the formalization of the refinement provided in the Appendix.

While Chapter 3 discusses the code execution environment, this chapter describes how that
environment was utilized. The following detailed discussion of the implementation design shows
what issues were taken into account and what difficulties were overcome.

4.1 Introduction

The requirements specifications are the basis for the implementation of an executable ASIM
model. That model can be found on GitHub,12 and will act as a foundation and test/verification
template for further business implementations.

This chapter focuses on the way the ASIM model was implemented and how the missing
functional parts of the backend, which is mainly about simulating a simple ledger, were realized.

4.2 Agents

The implementation is based on several ASIM agents which are programmed to act independently
and to communicate with each other through the messaging system provided by the ICEF
infrastructure.

There are small differences between the available ASIM agents. They can be categorized into the
following three groups, based on their purpose:

full agents

dynamic agents

non-functional agents

Full agents are started right away when the ICEF simulation is launched. They process requests
or handle other duties over the environment’s lifetime. Dynamic agents are created during
a specific phase of a test and destroyed after that test has been completed. Non-functional
agents are never started directly and are structured to facilitate their integration into another
agent. They host initialization code or helper functions in order to compensate for the missing
modularization feature of the ASIM-BSL language.

11 Eduard wrote this chapter and was the main implementer. Marylù supported the implementation effort. Paolo did
no implementation but thoroughly edited this chapter to optimize clarity of expression.

12 https://github.com/InterlaceProject/ASIMSpec

https://github.com/InterlaceProject/ASIMSpec

40 D3.1

To get more familiar with the actual ASIM realization an extract of available agents is listed in
Table 11. They may act as a template for extending the scenarios for additional use cases or tests.
They cover the core payment functionality, thus credit as well as debit operations.

Agent Function Type

scheduler Scheduling, creating and destroying dynamic agents full

server Server which talks to the dynamic clients in order to handle
payment and ledger-specific requests

full

CreditRequestClient Handles a test credit request dynamic

DebitRequestClient Initiates a test debit request dynamic

DebitAcknoledgeClient Confirms a test debit request dynamic

initdata Fake database and backend initalization code to be included
into the server agent

non-functional

Table 11: Agent list and their respective functionality

4.3 Execution

As mentioned in Chapter 3, the specifications are executed using the ICEF framework. In Chapter
3 we covered how a JSON ICEF file can be loaded and started. Now details are given about how
that process works in particular for the INTERLACE specification.

The process, shown in Listing 4.1, starts with the main ICEF definition file in the ASIMSpec
directory called run.icef by definition. The listing illustrates how the different types of agents
are included in the simulation. To explain further, all agents are located in the directory casim
together with casim/clients. Agent file names are the same as described in Table 11 and include
the suffix ".casim". The directory casim contains all full and their non-functional agents, which
are joined later on. The directory casim/clients hosts all the relevant clients talking to a server.
Currently there is one client for a credit request and two clients for a debit request.

1 {
2 "id": "interlace",
3 "schedulers": [{
4 "file": "casim/scheduler.casim",
5 "include": [
6 "casim/clients/CreditRequestClient.casim",
7 "casim/clients/DebitRequestClient.casim",
8 "casim/clients/DebitAcknowledgeClient.casim"
9],

10 "start": "true"
11 }],
12 "asims": [{
13 "file": "casim/server.casim",
14 "include": [
15 "casim/initdata.casim"
16],
17 "start": "true"
18 }]
19 }

Listing 4.1: ICEF JSON Specification for INTERLACE

INTERLACE Project (Grant no. 754494) 41

When looking closer at the ICEF definition, one can see that there are a couple of agents defined
inside of a JSON array with an attribute called include. All agents in that array will be added to the
main file. That means that CreditRequestClient, DebitRequestClient and DebitAcknowledgeClient
are added to the scheduler and initdata is added to the server agent.

Important note: The include syntax is used to append code from a different file to an agent but
comes with strings attached. See Section 4.4 for further details.

Consequently, the loading module will assemble no more than two ASIMs: a scheduler and
a server. The assembled JSON String is sent to the manager which initializes the simulation
environment and distributes the clients over the available brappers.

4.3.1 Main Agent Tasks

As mentioned at the beginning of this chapter, two main agents, scheduler and server, are the
core of the running environment. Once started, both instantly start working. The server listens for
messages on the communication channel in order to process potential requests and the scheduler
initializes the first test and starts clients which should be active during that particular test. When
a client has been initialized, it will carry out its assigned duties which will be to assemble a
request for the server and to handle the resulting query-response traffic. Of course the request
types are of different types depending on the current test and the type of the client. When the
client is done it sends a corresponding message to the scheduler, which terminates it.

The scheduler, as briefly introduced above, is responsible for spawning new clients which take
over different tasks. To do so, the scheduler defines various things in advance.

First, the current tests need to be identified, which is done by creating a universe as well
as two locations:

universe TEST_STATE = { START, TEST_CREDIT, TEST_DEBIT }
controlled currentTest: TEST_STATE
controlled nextTest: TEST_STATE -> TEST_STATE

The universe TEST_STATE defines the available test list. currentTest is an element of
the universe TEST_STATE and defines the currently executed test. Finally, nextTest is a
function which takes as parameter the current test as type TEST_STATE and gives you
as result the next test in the queue which is of the same type. To initialize the predefined
locations the following commands are executed:

currentTest := START
nextTest(START) := TEST_CREDIT
nextTest(TEST_CREDIT) := TEST_DEBIT

During the execution of the scheduler’s main program it is possible to transition from one
test to the next by

currentTest := nextTest(currentTest),

applying the current test to the nextTest function. This can be done until the return value
of the function is undef, implying that no other test is left.

For each current test, a functional location is used which returns a list of client agents for
a given test state. The functional location can be defined as follows:

controlled nextClient: TEST_STATE -> LIST

42 D3.1

That nextClient function needs to be set up during the initialization phase of the agent as
well:

nextClient(TEST_CREDIT) := [CreditRequestClient]
nextClient(TEST_DEBIT) := [DebitAcknowledgeClient, DebitRequestClient
↪→],

showing that we have one client for a credit request test and two clients for a debit
request. Also important to remember is that rules for a client agent are initially defined
in a separate file but, as noted already, they are included in the scheduler later by just
appending the code. Thus, each tested client is absolutely required to have unique names
for the initialization, the program and the policy rules over all included files!
Next, the missing parts are added up to get the full picture on how the clients are
started. In particular, how the base rules for a dynamic client are defined and how
they are eventually instantiated and handled during runtime. Listing 4.2 illustrates the
management of the different clients.

1 //definition of functional location for getting
2 //a function reference for a client name
3 controlled initBy: CLIENT -> FUNCTION
4 controlled withProg: CLIENT -> FUNCTION
5 controlled andPol: CLIENT -> FUNCTION
6

7 rule Start = {
8 ...
9 //Setup CreditRequestClient rules

10 initBy(CreditRequestClient) := InitCreditRequestClient
11 withProg(CreditRequestClient) := ProgramCreditRequestClient
12 andPol(CreditRequestClient) := SkipCreditRequestClient
13 ...
14 }
15

16 rule Program = {
17 ...
18 //Client rules are defined in clientTemplate script
19 if currentTest != undef then seq
20 forall createClient in nextClient(currentTest) do
21 createASIM createClient
22 initializedBy initBy(createClient)
23 withProgram withProg(createClient)
24 andPolicy andPol(createClient)
25 in activeList(createClient)
26

27 activeClients := | nextClient(currentTest) |
28 endseq
29 ...
30 }

Listing 4.2: Scheduler core functionality

In this listing we can identify three parts:

1. The definition of three functions that take a CLIENT as parameter and return a
FUNCTION can be observed, namely initBy , withProg , and andPol . This FUNCTION

return type can be any rule we have defined inside of the scheduler or inside of the
dynamic clients which are included into the scheduler.

2. For client CreditRquestClient these three function values need to be set. So for example
it is possible to define an init rule called InitCreditRequestClient for CreditRequestClient

like this:
initBy(CreditRequestClient) := InitCreditRequestClient

INTERLACE Project (Grant no. 754494) 43

and afterwards to call function InitCreditRequestClient by using:
initBy(CreditRequestClient)().

3. During the iterative execution of the Program rule the actual starting of the client is
processed. If a valid test has been selected, nextClient(currentTest) provides a list of
clients valid during that particular test. The forall loop walks through that list and uses
the corresponding iteration to instantiate the chosen client. This instantiation is done
by calling the createASIM command and passing the start-up rule (initializedBy), the
main program rule (withProgram), and the scheduling policy (andPolicy).

In line 27 of Listing 4.2 the count of active clients is stored. That count is reduced by
one when a "Done" message has been received by a dynamic client. Also the client is shut
down by calling

destroyASIM clientName

After the activeClients counter has been reduced to 0 again, all clients have terminated and
the next test can be covered. To conclude, it is possible to say that the activeClients counter
is used as a structure similar to semaphores, which takes care that no new clients are
issued as long as it has a value bigger than 0, and the scheduler is therefore in something
similar to a paused state. Certainly, is it not really paused but in a “busy wait loop”.

The server agent acts as the main component that implements most of the requirements
specified, which for the moment is credit and debit operations. The server is started right away
when CASIMA has received and processed the JSON file for the simulation.

When the init-rule called Start is executed, the Ledger and PendingTransaction are initialized as
empty maps, a one-time password (OTP) lifetime is set, and the Logger is set up. The logger offers
several logging levels and details about it can be found in Section 4.6. Also a rule called InitData()

is executed at start-up. It is important to know that the Eclipse Plug-in shows that this rule has
a Problem/Error because it is not defined in the server.casim file and thus it is not recognizable
by it. Nevertheless, this rule is placed correctly and will work fine, because it is defined in the
non-functional agent initdata. Due to the include statement inside of the run.icef, the content of
initdata is appended to the server.casim before it is sent to the CASIMA manager.

Rule initData in the initdata client consolidates the rest of the initialization inside. To be more
specific, the following locations are prepared for later use when it is called:

sessionData ... simulates session information
profileTable ... contains user profiles
accountTable ... user accounts
userGroupTable ... specifies users’ group membership
TT ... transfer type translation table
accountConnectivity ... transferability between accounts

After the start-up phase has been completed, the server goes into listening mode, in which the
main program DispatchMessages is called iteratively. In this mode, all relevant messages received
by the server are taken care of. In Listing 4.3 the dispatch process of server can be viewed in
detail. All inbox messages of the current engine tick are fetched using the inboxOf in addition to
the forall statement. The message reference m as named in the loop is used to retrieve subject,
message, and sender of the current post box entry m.

Messages that are not recognized as having an accurate message type are discarded. The
message type is defined by the message subject and is compared to one of the predefined entries

44 D3.1

in the universe definition MESSAGE_REQUESTS . For real-world use it is essential to introduce
some kind of additional message signing to verify by whom the message has been sent.

1 rule DispatchMessages = {
2 forall m in inboxOf(self) do seq
3 //fetch message information
4 msubject := getMessageSubject(m)
5 msgIn := getMessageContent(m)
6 member := getMessageSender(m)
7

8 //dispatch messages
9 if msgIn != undef and member != undef then

10 case msubject of
11 toString(CreditPreviewReq): HandleCreditPreviewReq(msgIn, member)
12 toString(CreditPerformReq): HandleCreditPerformReq(msgIn, member)
13 toString(DebitPreviewReq): HandleDebitPreviewReq(msgIn, member)
14 toString(DebitPerformReq): HandleDebitPerformReq(msgIn, member)
15 toString(DebitAckCompletion): HandleDebitAckCompletion(msgIn, member)
16 endcase
17 endseq //end forall
18 }

Listing 4.3: Server message dispatching

4.4 Modularization and Include Syntax

For the INTERLACE specification the ICEF framework has been extended to support an "include"
syntax inside of the ICEF JSON files in order to import sources to an agent. This has been added in
order to compensate for the "Modularity" module of ASM which stops working in ASIM because
of its distributed nature.

However, it is important to realize that the include statement needs to be used with caution,
because one needs to be aware that it effects nothing more than the appending of the content of
the included file to the main agent file. This appending raises the following issues:

Line numbers are different to the original files

For a compilation problem it might be necessary to take a look at all files, the main as well as
included ones

Naming needs to be consistent throughout all files. E.g. Eclipse will not notify a developer
whether a name for a rule, location, etc has been used twice.

Nevertheless, it is a useful approach for handling code separation, in order to avoid a single and
extremely long file which would be difficult to maintain and work with.

In order to be able to use Eclipse and the ASIM eclipse hinting/error detection provided by the
plugin, another “quick-fix” has been introduced. For the case when a dynamic or non-function
agent needs to be added, it will be appended at some point to a parent agent. Thus definitions like
“CoreASIM asimname” would occur twice inside of that final agent. For the interpreter to work
correctly it is necessary to have only one header defining the name of an agent and, therefore,
to remove that header definition inside of the included files. However, if the header definition is
not present at all in the file before it is included, Eclipse is not able to provide correct syntax
highlighting, hinting or error detection.

INTERLACE Project (Grant no. 754494) 45

1 /*includeskip begin*/
2 //this part will be removed
3 CoreASIM Company
4

5 use Standard
6 init dummy
7 rule dummy = skip
8 scheduling NoPolicy
9 policy NoPolicy = skip

10 /*includeskip end*/
11

12 //this rule is included to main agent
13 rule somerule = {
14 ...
15 }

Listing 4.4: includeskip usage

Thus, the new quick-fix is to give the programmer the possibility to mark a section which will be
removed during the agent assembly. The beginning of such a section is marked with /*includeskip
begin*/ and the end with /*includeskip end*/. When using these markers they need to be placed
exactly as described – no additional white spaces (space, tab, return, ...) or different letter cases.
Listing 4.4 shows a simple example.

Inside of the skipped section there may be many different things placed as shown in the example
in order to work seamlessly with the Eclipse hinting. Place names of locations or universes can
also used. The reason for putting them there is to avoid a warning by the Eclipse plugin that the
variable/location has not been defined yet; in other words, in order to check correct spelling and
avoid the problems caused by any such issues only becoming obvious at interpretation time.

4.5 Dynamic Clients

This section elaborates further on the dynamic client features and functionalities. It explains
how they are used as well as how they process the information and create the various requests.
Further, details about the message types are given in detail.

4.5.1 Communication and Message passing

As mentioned in Chapter 3, Section 3.3.2, communication in the ICEF framework is based on
message passing. Thus each agent has the possibility to send messages to a named agent as well
as receive messages from any other. The messages can be picked up at the agent-specific mailbox
using the designated functions provided by the communication plugin.

All agents work independent, do not share any states, and only are aware of their own status.
Consequently, they have to rely on the mailing system to share information. This is an important
fact because in a real-world scenario clients are also working independently of each other. In
order to support this independence ASIM agents apply the distributed design pattern.

Messages from one client to another are not encrypted. Thus it is important to realize that
security needs to be taken into account separately. Security is currently not part of the
implemented model but it is a very important part of the planning of a business-ready product.

46 D3.1

4.5.2 Message Types

At the moment there are several message types that are part of debit and credit requests.
Table 12 gives an overview of which messages are in use for handling transfer operations. The
messages are listed in the order of occurrence. However, the precise overall communication
sequence is shown in Figures 4.1 and 4.2. Finally, the message types listed in Table 13 are
operation-agnostic (debit, credit) but vary based on their transfer parameters.

Message Name Purpose Attached Parameters

CreditPreviewReq first check of credit request CRP∗

CreditPerformReq request to actually perform a credit request CRP∗

DebitPreviewReq first check of debit request DRP∗∗

DebitPerformReq request to actually perform a debit request DRP∗∗

ConfirmationReq to ask debitor for permission to perform the
debit transfer

DRP∗∗, OTP∗∗∗

DebitAckMsg debitor gives permission to perform the debit
transfer

DRP∗∗,1, OTP∗∗∗

Table 12: Credit/Debit message types overview
(∗Credit Request Parameters: from-account, to-account, amount, meta-data, channel, member)

(∗∗Debit Request Parameters: creditor, debtor, amount, meta-data, channel)
(∗∗∗One Time Password, 1optional)

Message Name Purpose Attached Parameters

Proceed answer from server that the CreditPreviewReq
has been successful

CRP∗/DRP∗∗

DoNotProceed answer from server that the CreditPreviewReq
has NOT been successful

error message, CRP∗/DRP∗∗

NotPermitted answer from server that the CreditPerformReq
has NOT been successful

error message, CRP∗/DRP∗∗

TransferPerformedSuccessful answer from server that the CreditPerformReq
has been successful and the transfer has been
recorded and confirmed

success message, CRP∗/DRP∗∗

Done Message to Scheduler that the client simula-
tion is done and can be terminated

none

Table 13: Operation-agnostic message types overview
(∗Credit Request Parameters: fromAccount, toAccount, amount, meta-data, channel, member)

(∗∗Debit Request Parameters: creditor, debtor, amount, meta-data, channel)

Let’s review the implementation of a credit preview request to a running agent called “server” in
Listing 4.5. When taking a closer look at line 9 it can be observed that the send command is setting
a location named CREDITREQUEST for the message content and one called CreditPreviewReq is
used for defining the message subject.

CREDITREQUEST is of type of map that is used in the BSL/ASM language as a set of key/value-
pairs. That map carries the information required for that message type, implying that for the
credit transfer example in Listing 4.5 the parameters are chosen accordingly (see CRP in Table
12).

The actual message type is determined by the subject. As mentioned, the CreditPreviewReq

content is used for defining the subject. At client level, unfortunately, it is not possible to
predefine a universe containing the CreditPreviewReq like it is done in the head section of the

INTERLACE Project (Grant no. 754494) 47

server. The reason is that the createASIM command used in the scheduler for spawning dynamic
clients does not allow to include a header section: just an init rule, the main program, and the
scheduling policy. The consequence is that the message types used for clients are locations of
type STRING , which are created in the init rule and set up as locations whose names are the
same as their values. See line 1 in Listing 4.5.

1 CreditPreviewReq := "CreditPreviewReq"
2 CREDITREQUEST := {
3 "from" -> "accId1",
4 "to" -> "accId2",
5 "channel" -> "Service",
6 "amount" -> 2000,
7 "metadata" -> {"message", "some transfer"}
8 }
9 send CREDITREQUEST to "server" with subject CreditPreviewReq

Listing 4.5: send message

Concluding, the subject containing the message type is always converted to a STRING

representation in order to stay consistent. Also the server agent, which uses a universe
definition, converts its enumerative representation of message types to STRING by calling e.g.
toString(CreditPreviewReq). An example is shown in listing 4.5 for a CreditPreviewReq-Message.

The reason for naming locations exactly after their content is based on a programming principle
which says that strings which are static and never change should be represented by an
unchangeable variable name or, in ASM/BSL language terms, as a predefined location. This best
practices principle has the following benefits:

Typing errors can be immediately found because an IDE13 usually shows them as unknown or
undefined. Whereas a misspelled text might be only found at runtime.

Not only typing errors but also not yet defined locations are marked by the ASIM-Eclipse
Plug-in. Thus, in case of Interlace specifications, unrecognised message types can be found
quickly and added to the message type space.

Known variables/locations can be provided through syntax completion, thereby simplifying
and speeding up the implementation process.

Usage of specific types might be restricted under certain conditions.

4.5.3 Client Features and Functionalities

For INTERLACE, and of course for any other software project, it is important to test the
correctness of the model and of the implementation. This document will not talk about these
tests; rather, it covers details of how clients are prepared to support a testing environment.
These clients will later be programmed to act like user devices performing a specific action or
transfer.

Such clients are called “dynamic” due to their limited lifespan and as explained in Section 4.2 are
not intended to be started right at the beginning of the INTERLACE simulation but, rather, on an
on-demand basis. Thus, their lifespan is meant to be restricted to the duration of their specific
task.

13 Integrated Development Environment

48 D3.1

Dynamic agents are used to simulate a user device where a user has been logged-in. In figure
4.1and 4.2 the dynamic agents are CreditRequestClient and DebitRequestClient respectively. To add
this authentication mechanism an additional layer has been introduced which was not part of the
requirements definitions. This layer, explained in detail in Section 4.7.3, adds a pseudo-login
possibility and holds session-like information for each of those clients created by the scheduler.
Thus, in terms of network topology the name of an ASIM is defined as the address of a device
and the (member-)name of a user can be looked up inside a session table.

:Scheduler :CreditRequestClient :Server

CreditReviewReq

Done

DoNotProceedOPT 1-DnPM

[Credit preview Check = Not OK]

OPT 2-PM

[Credit Preview Check = OK]

Proceed

send CreditPerformReq

NotPermitted

Done

OPT 2-PM.a-NP

[Preview Check or Balance Check = Not OK]

TransferPerformedSuccessfully

Done

OPT 2-PM.b-TPS

[Valid Transaction]

<<create>>
CreditRequestClient

DnPM Do Not Proceed Synchronous Call

PM Proceed Return Message

NP Not Permitted

TPS Transfer Performed Successfully Agent Activation

OPT Option/Choice

Fig. 4.1: Credit request message protocol

When following the sequence diagram in Figure 4.1, it is necessary to keep in mind that these
messages are sent from a CreditRequestClient but initiated and owned by a member who is
logged in and registered in the session’s data lookup table. For the server agent process it is
important to know which member is currently sending that transfer in order to perform various

INTERLACE Project (Grant no. 754494) 49

checks and store valid transfers. Certainly, the same applies for the DebitRequestClient and the
DebitAcknowledgeClient of Figure 4.2.

Dynamic Request Clients start off when they are created by the scheduler agent and do not
send or receive any request beforehand. Consistently with a typical state machine, the clients
manage their own states and act according to them. CRC14 and DRC 15 use four main states that
are explained in detail in Section 4.5.4.

The message sequence from client to server is specified in Section 4.1 for the CRC and in Section
4.2 for the DRC. In comparing those two figures, it is clear that the message sequences look very
similar: only the names vary by their prefix (debit versus credit). However, what might not be
obvious here is that the request parameters are quite different.

Another main difference between the credit and debit message sequences is, though, that a debit
request needs ConfirmationReq as well as DebitAckMsg . This is necessary because an initiating
creditor (Seller) needs to have the transaction confirmed by the debtor (Buyer) to be sure of
having a valid transaction which credits the payment to the Seller’s own account.

:Scheduler :DebitRequestClient :Server

Done

DoNotProceed
OPT 1-DnPM

[Debit Preview Check = Not OK]

OPT 2-PM

[Debit Preview Check = OK]

Proceed

DebtPerformReq

NotPermitted

Done

OPT 2-PM.a-NP

[Preview Check or Balance Check = Not OK]

TransferPerformedSuccessfully

Done

OPT 2-PM.b-TPS

[Valid Transaction]

:DebitAcknowledgeClient

DnPM Do Not Proceed Synchronous Call

PM Proceed Return Message

NP Not Permitted

TPS Transfer Performed Successfully Agent Activation

OPT Option/Choice

DebitReviewReq

<<create>>

DebitRequestClient

<<create>>

DebitAcknowledgeClient

ConfirmationReq

DebitAckMsg

Fig. 4.2: Debit request message protocol

14 Credit Request Client
15 Debit Request Client

50 D3.1

The sequence diagrams denote optional flows using option boxes. These boxes have a unique,
numbered name. An option OPT at the first level has a number (choice 1 or 2) as well as an
abbreviated name (DnPM , PM). Sub-options in the second level are alphabetically numbered
and also followed by an abbreviated name. Square brackets underneath the option name indicate
the current option choice.

ASIMs currently do not have the possibility to sleep for some time or until an event has occurred.
Consequently, when waiting for a particular incident or circumstance they need to implement
a so-called busy-wait. That means that the Program is still executed at each ASIM “tick” and
not put to sleep by the OS-scheduler. Nevertheless, agents are able to reduce the executed
commands in the current tick to a minimum, thereby achieving a similar result. For standard
multi-threaded programming this would still be a huge issue and might even cause a whole
system to be unusable. For ICEF, however, this is not the case because at each tick every program
gets time to finish while others are pausing if they are done faster with their current execution
step. Inside of the sequence diagrams, activated clients are shown by the vertical fully colored
bars. Non-active phases are indicated by the vertical dashed lines.

The emulated users in the figures are pictured on top of the clients to show that requests are
sent by particular members.

Scheduler and server are agents which can be seen as autonomous processes in the simulation.
The scheduler mainly acts as an orchestration tool for testing purposes and will be removed
for actually deployed applications, whereas the server agent needs to exist in a real-world
scenario. Maybe not as a process running on a centralized server structure but when taking
a real distributed scenario into account it will be implemented using some kind of smart contract
running inside of a virtual machine in a blockchain environment.

4.5.4 State Management

States are managed over four predefined pseudo-static locations. Another location called
client_state holds the current agent state which is one of those four states. A state change can be
achieved by simply assigning a new state to client_state location like client_state := RECEIVE .
In the next program-iteration of the agent that state change will be processed. The four possible
states to set are as follows:

SEND: only when sending a message
RECEIVE: receive and directly respond to messages
TERMINATE: end execution; send “Done” message
DONE: everything is done; ready to be terminated

SEND might be used if a sequence of messages is sent where no reply message is needed, or just
to submit an initial message at start-up before going right into the RECEIVE mode.

RECEIVE waits for the messages and acts accordingly. When a message has been received and
it is necessary to send a response it is done right in RECEIVE mode without changing to SEND

mode.

SEND and RECEIVE states could be set alternately, but when the TERMINATE state is set to
client_state the process of shutting down the agent is going to be started at the next iteration.
When finishing the termination process agent state DONE will be reached. Once the DONE state
is active, even if not stopped yet by the scheduler, the client won’t do anything useful anymore.

INTERLACE Project (Grant no. 754494) 51

The DAC16 uses the same states except for the SEND state because it only needs to receive and
confirm a transfer by using the given one-time password. The DAC is an example of the fact that
not all of the states need to be covered by a client, which may be relevant when creating new
clients.

Server & Scheduler States are not technically a part of this section, since it is mainly about
the dynamic clients. Nevertheless, a brief explanation of their states is given here to keep them
together.

The server does not have any particular mode or state management yet. It just waits for messages
and when it receives one it processes it directly.

The scheduler mainly has its test states, as mentioned in Section 4.3.1, and transitions from one
test to another till there are no tests left. For each test the scheduler has two stages:

First, in the starting phase all the clients of that particular test are started and counted.
Clients which should be part of one test state need to be defined as dynamic and appended to
the scheduler by using the include statement in the run.icef definition.

Then, the scheduler in its second phase waits for as many DONE messages as the number of
clients that have been instantiated. Finally, when the client count is zero, the scheduler goes
to the next test and starts that two-phase process again.

4.6 Logging

The server agent needs to place many different status messages of different importance. In order
to manage their occurrence, a simple logger has been added. The logger introduces five log
levels:

1. FATAL
2. ERROR
3. WARN
4. INFO
5. DEBUG

These levels denote the different severities that can be recorded into the logger and necessarily
communicate the maximum severity of a message presented to the executing user. To explain
further, FATAL messages should be printed always, whereas DEBUG messages are only of
interest for developers who need very detailed information of the current state.

Consequently, the maximum log level can be given at agent start-up inside of the init rule. The
rule used to define the level is explained here

//rule header
rule initCustomLogger(set_log_level) = ...
...
//init logger call
initCustomLogger(DEBUG)

When initialized, the logger can be used at any place by calling the do_log rule, which takes
two parameters. The first is the actual message printed to the output and the second parameter

16 Debit Acknowledge Client

52 D3.1

describes the importance of that message by using one of the five mentioned severity levels. The
listing below shows first how to log a message with severity INFO and the second call illustrates
a FATAL error message output.

// An "INFO"-level message
do_log("Transfer has been performed successfully", INFO)
...
// A "FATAL"-level error message
do_log("List ’Ledger’ in unknown state", FATAL)

Currently, the logger implementation can only be utilized meaningfully inside of the server itself,
because the implementation is also hosted by the server agent definition file server .casim directly.
It would certainly be possible to put the logger into a different file, but the include statement of the
run.icef is not supported by the Eclipse plugin. Consequently, if the logger implementation were
separated out into an additional file, all occurrences of do_log calls would be marked as erroneous
(even if they were not) and would then turn the coding-assistance tools inside of Eclipse into an
unusable environment.

4.7 Test Scenario

This deliverable does not cover the test management for the ICEF implementation of INTER-
LACE. However, in order to check if a base workflow of a requirement is working in its most
simple form a strategy has been followed which has been partly explained already by other
sections of this chapter. The scope of this section will therefore be to put these parts together
and extend the missing bits.

4.7.1 Separation of Concerns

When looking at the environment from a testing perspective there are three parts which can be
distinguished:

1. Actual system requirements implementations

2. Testing routines

3. Simulation environment

The "actual system requirement implementations" cover parts that are needed for a possible real-
world system. Without these, the system would not be able to function. Therefore, they can be
seen as the core part of the application which is supposed to be tested.

Second, code parts have been implemented which are only there for performing and validating
a test of a particular scenario use case. Currently these scenarios are credit and debit operation
requests sent from virtual clients.

Last, parts of the system had to be implemented in a prototypical and most basic form in order to
achieve a very simple executable version which can accommodate the test scenarios. These parts
were not included in the requirements definitions or in the refinements. These parts comprise
implementation details not relevant to the requirements or to the main ledger implementation.

In Section 4.3.1 the main agents are explained, scheduler and server . When assembled for
execution, they are fully implemented. The server covers the actual system requirement

INTERLACE Project (Grant no. 754494) 53

realizations as well as the simulation environment code. To be more specific, the server dispatches
the message requests explained in Section 4.3 and performs read actions to the virtual profile,
account, etc. information, together with pushing transactions to a primitive ledger discussed in
Section 4.7.2.

The scheduler mostly contains testing routines but partly also routines that handle the necessary
client implementations that are not covered by the requirements. The test routines are
responsible for starting and destroying clients. As a short reminder, the scheduler is able to do so
because it also contains all the client code. Further, Listing 4.5 shows the sending of a test credit
request issued by the CreditRequestClient . This message is processed by a challenge-response
sequence between the server and the client that imitates a transaction.

Concluding, a correct execution is currently only shown by a client which outputs a transfer-
performed message when done. In case of an error the client would provide a message indicating
the cause.

4.7.2 Simulation Environment

The simulation environment created for enabling the core server parts to be executed and later
be validated has an active and a passive part. The so-called active part takes care of storing a
transaction into the ledger, while the passive part contains various pre-prepared locations which
are needed to satisfy the different constraint requirements.

Locations: Beginning with the passive part, the following locations have been defined in the
non-functional client initdata shown in Listing 4.6.

1 controlled TT: OPERATION * UNIT * USER_TYPE_GROUP -> SET
2 controlled AccT: OPERATION * UNIT * ACCOUNT_TYPES -> SET
3

4 controlled profileTable: MEMBER_ID -> MAP
5 controlled accountTable: ACCOUNT_ID -> MAP
6 controlled userGroupTable: MEMBER_ID -> USER_TYPE_GROUP
7 controlled sessionData: MAP

Listing 4.6: Simulation environment locations

The two most important are the functional locations TT and AccT . They correspond to the
transfer type functions described in Section 2.3.3 and the account connectivity conditions
presented in Section 2.3.4, respectively. TT was predefined precisely in the requirement
definitions and is described as a functional mapping

TT : Operation × Currency ×Group → {G | G ⊆ Group}.

So we can define that for a Credit operation in Sardex (SRD) an Employee is allowed to perform
a transaction with a member of the circuit which is part of one of the groups Company , Retail or
Full :

TT Credit ,SRD(Employee) = {Company ,Retail ,Full}.

When translating this discrete functional mapping to BSL, the outcome looks like this:

TT("credit", "SRD", "employee") := {"company", "retail", "full"}

54 D3.1

The account connectivity function AccT takes operation, currency, and account type as parame-
ters and maps them to a group of account types:

AccT : Operation × Currency ×AccountType → {Acct | Acct ⊆ AccountType}.

As discussed in full detail in the Appendix, when replacing the parameters by actual values we
obtain:

AccT Credit ,SRD(X) = {CC ,Domu,Mirror} if X ∈ CC ,

which then can be transformed again into the “implemented” form and is represented like this
inside of the initdata agent:

AccT("credit", "SRD", "CC") := {"CC", "DOMU", "MIRROR"}.

The other locations listed in Listing 4.6 accommodate important information for groups,
members, and sessions as well as accounts. Except for the userGroupTable, which just maps a
user to its current operational group, all functions implement a result of type MAP . A MAP is
similar to a simple set with the difference that each entry of a MAP is a key-value pair.

1 //init profile data
2 profileTable("mbrId1") := {
3 "lowBalanceAlert" -> 700,
4 "highBalanceAlert" -> 1000,
5 "highVolumeAlert" -> 10000,
6 "capacity" -> 100000,
7 "saleVolume" -> 50000,
8 "accounts" -> ["accId1", "accId4"]
9 }

Listing 4.7: MAP example showing a profile table entry

Listing 4.7 shows a typical definition of such a map which may be compared to a hash map used
in various different other programming languages. Those values are accessed based on different
pre-defined rules which are explained in Section 4.8.

Ledger: The ledger but also the pending transactions are initialized as empty maps:

Ledger := {->}
PendingTransactions := {->},

and when a transaction matches the required constraints it is appended to that ledger map.
For unconfirmed debit requests a second map called PendingTransactions has been added which
contains valid transactions which have not been confirmed by the debtor yet.

After the various checks – which vary a little based to the type of operation – have been passed
successfully, the transaction is appended using the following command:

Append(Transaction(transfer, client, "debit", now), Ledger)

A pending transaction awaiting a correct OTP from a debtor is added to location PendingTransactions

as follows:

Insert(transfer, creditor, PendingTransactions) Ledger).

INTERLACE Project (Grant no. 754494) 55

After a transaction has been confirmed by a valid OTP, it is moved, as mentioned, to the
actual ledger. Inside the PendingTransactions map the state of that transaction is changed to
TRANSACTION _PERFORMED but the transaction is not deleted.

4.7.3 Additional Login Layer

The requirements specifications do not define how authentication is handled by the system.
Agents in ICEF have predefined names which cannot be changed during runtime. In order to
act flexibly and reuse agents, a login layer has been introduced. Thus agents who are actively
communicating with the server need to be registered in the sessionData location which is
initialized in the initdata function.

Agents in the current prototypical implementation do not login by themselves by providing
a username and password but place their address together with a valid member ID in the
sessionData MAP as shown here:

sessionData := {
"CreditRequestClient@CreditRequestClient" -> "mbrId1",
"DebitAcknowledgeClient@DebitAcknowledgeClient" -> "mbrId4",
"DebitRequestClient@DebitRequestClient" -> "mbrId2"

}

The address of an agent is defined by “agent_name@agent_name”, thus by a concatenation
of its own name with an “@” symbol. That address syntax is a mannerism of the ICEF
framework and used during message processing. For example, when looking at the above
sessionData set-up, it is possible to determine that on agent CreditRequestClient ’s user with id
mbrId1 is logged in. Therefore, all message coming from agent CreditRequestClient with address
CreditRequestClient@CreditRequestClient are considered as message sent by mbrId1 because of
sessionData-MAP.

The member ID represents an alphanumerical string assigned after an initial registration. For the
INTERLACE implementation this means that an entry also needs to exist in location profileTable,
in addition to userGroupTable, at which point the user has been properly registered and is known
to the system. If the user wishes to perform a transaction, for the transaction to be valid an entry
in location accountTable should be added for that user, in order to assign an actual account to that
user and enable the system to work with it.

At runtime two derived functions are used to read the information of sessionData. As shown below,
a member ID of an “active” user can be determined by calling activeLogin. Whether a member is
currently logged-in may be found out by obtaining the result of activeClient .

//get member id by providing a client name using session information
derived activeLogin(client_address) = ...
//usage
login_mbrId := activeLogin("CreditRequestClient@CreditRequestClient")

//get client name by providing member id using session information
derived activeClient(login_mbrId) = ...
//usage
client_address := activeClient("mbrId1")

One restriction needs to be mentioned though: a client address can only be associated with one
logged-in member at any one time, and vice versa.

56 D3.1

4.8 Important Rules and Locations

Next, the emphasis is put on explaining rules and locations not discussed in detail or not
mentioned at all in this document yet. All rules and locations in this section can be found in
file server .casim or initdata.casim, which is added to the server part by means of the include

statement in run.icef.

In the BSL language, the choose keyword is needed to read a value for a given key stored inside a
MAP location. That syntax made the actual code difficult to read in some cases. To simplify this
access, a derived function v has been introduced for working with MAP -type locations:

⇒ derived v(amap, key).

The parameter amap can be any MAP -type location and the key refers to the entry of interest.
Consequently, the corresponding value can be read by passing an existing key , as illustrated in
the following example:

mymap := {
"thekey" => "assignedvalue",
"another" => "somevalue"

}
valueofkey := v(mymap, "thekey")

Finally, if the map or the key is undefined, also the result will be.

The ICEF framework uses a plugin called “CommunicationPlugin” to establish a simple commu-
nication system. As mentioned in the previous section, a method called send is used to transfer a
message between ASIMs. However, the server implementation usually does not call that method
directly but, rather, it calls a rule with the same name starting with an upper-case letter. This
Send rule takes as first parameter a message which contains a list of two strings. The two strings
are the message content itself and the message subject. In order to abstract the message type
from the user, a derived rule called AssembleMessage is provided for creating such a message.
The second parameter is the recipient agent’s name, not the ID of a particular member:

⇒ derived AssembleMessage(msg, sub)
⇒ rule Send(msg, agent).

When passing a message before sending, other parts of the implementation may use the functions
messageContent and messageSubject on the assembled message to get back the content and the
subject, respectively. Also Send uses these two functions to read content and subject for the actual
sending process. In case of error or success, corresponding response messages are generated.
IncorrectOtpFor is one example which is used inside the server implementation to create an
appropriate error message based on particular related arguments:

⇒ derived messageContent(msg)
⇒ derived messageSubject(msg)
⇒ derived IncorrectOtpFor(otp, amount, creditor).

Continuing further on OTPs, there are three important functions that should be mentioned in
addition to the requirement definitions. RandomHex generates a random hexadecimal number.
Next, HexString calls RandomHex n times, where n equals the first parameter length in the form
of a hexadecimal string. This hexadecimal string generation is used for creating OTPs as well as
transaction IDs for appending unique transactions to the ledger:

INTERLACE Project (Grant no. 754494) 57

⇒ derived RandomHex
⇒ derived HexString(len)
⇒ derived OneTimePassword(strength)

Transactions are transferred using a MAP . A credit transfer is shown next:

⇒ CREDITREQUEST := {
"from" -> "accId1",
"to" -> "accId2",
"channel" -> "Service",
"amount" -> 2000,
"metadata" -> {"message", "some transfer"}

}

For all attributes used inside these transfer-request maps, derived functions have been created.
One function and its usage is shown here:

⇒ derived fromAcc(transfer)
// example
fA := fromAcc(CREDITREQUEST)
fA = "accId1" //is true

Next, we examine the ledger and the preliminary storage for pending transactions. Both are
maps storing transactions. The difference is that the function PendingTransactions is using an
OTP key to map to a transaction, whereas a finally persisted transaction is mapped using an
transaction ID key. OTPs are created by OneTimePassword and transaction IDs are created by
calling NewTransactionID .

⇒ controlled Ledger: MAP
⇒ controlled PendingTransactions: MAP

Rule Insert adds a new transaction (which is awaiting confirmation) to a map (parameter
pendingTransactions of Insert). The server stores all these unconfirmed requests in a map called
PendingTransactions, as defined above.

After a valid and existing OTP has been sent for a transfer in PendingTransactions, the transfer
needs to undergo some more checks; but, when approved, it is appended to the Ledger by
executing the rule Append .

Insert and Append are listed here together with Transactions and NewTransactionID :

⇒ rule Append(transfer, ledger)
⇒ rule Insert(transfer, creditor, pendingTransactions)
⇒ derived NewTransactionID(len)
⇒ derived Transaction(transfer, mbr, operation, date)

Finally, we described a rule that is part of the requirements but is used in a different way. The re-
quirements call for three functions called FinalDebitAccountLimitsCheck , DebitAccountLimitsCheck ,
and CreditAccountLimitsCheck . These functions are similar and are integrated in the ICEF
implementation. PreviewCheck implements this check and needs the member ID mbr , the from

account fromA, the to account toA, a from group fromGroupId , a toGroupId and, as last parameter,
the operation operation as a String. The operation string can be either “credit” or “debit”. This
code example shows the rule but also how it is used in the current setup:

58 D3.1

⇒ rule PreviewCheck(mbr, fromA, toA, fromGrpId, toGrpId, operation)
//example: do check the transfer if it is ok
error <- PreviewCheck(
activeLogin(client), //read mbr from message client-address
fromAcc(transfer), //read from account of transfer
toAcc(transfer), //read to-account of transfer
groupOf(ownerOf(fromAcc(transfer))), //get group of from-account owner
groupOf(ownerOf(toAcc(transfer))), //get group of to-account owner
"credit" //Operation as string

The result of PreviewCheck is either undef , if all checks are successful, or it contains a textual
message indicating the problem.

4.9 Implementation Challenges

When working with the ICEF framework, some things should be noted. Currently, the ICEF
framework is an academic tool and not ready for industry use. Additional effort needs to be
expended in order to achieve a fully integrated system for an industry-grade software design
process or even a continuous integration process. We now outline some of the still-open issues.

4.9.1 Issues

During development the team has been confronted with different issues regarding the ICEF
framework but also with the process of moving the specifications to a running ASIM INTERLACE
Model:

Unknown line numbers Before transmitting a simulation to the ICEF manager, JavaScript code
loads all specified .casim files, preparing them for being sent over the network in the form of a
consolidated JSON message. This process, together with the added preliminary include syntax,
exhibits a problem with respect to error messages. More precisely, if something goes wrong
the error messages do not contain the relevant line number(s) of where the error occurred.
Thus, in case of any failure it can be very difficult to locate the actual cause.

Error in block Errors inside a block cause the whole block not to be executed for unknown
reasons. For example, if a block has n statements and the last one has a problem, all the other
n−1 statements might not be executed either, even if a sequential block was used. Given that
the error messages do not contain correct line numbers, finding a problem with debug output
to the console also does not work appropriately in all cases.

Parallel blocks ASM code and consequently also BSL code allows to write so-called parallel
blocks. These blocks start with par , end with endpar , and contain code which is executed in
parallel – at least theoretically. The important thing to know here is that the order of execution
is not guaranteed. This can lead – and actually led during development – to unpredictable
behaviour and needs to be used with caution!

Bugs As the ICEF framework is still at the alpha stage, a couple of bugs occurred which could
be fixed. However, further testing iterations are needed to make the framework stable.

Testing Various testing approaches still need to be investigated, because at the moment only
the text output of a simulation can be checked to test if the system is running correctly. These
testing approaches will be part of the upcoming research.17

17 For example, we are likely to adopt Cucumber https://cucumber.io/ and Gherkin https://docs.cucumber.io/
gherkin/, since they are used by the Hyperledger blockchain development community.

https://cucumber.io/
https://docs.cucumber.io/gherkin/
https://docs.cucumber.io/gherkin/

INTERLACE Project (Grant no. 754494) 59

Modules The solution of how modules, or how other code snippets, are integrated comes with
strings attached, like the inaccurate/missing line numbers mentioned above and duplicated
name spaces. Thus, a re-factoring for later use is highly recommended.

From document-based to executable When a system behaviour has been written down in
the form of an ASM/ASIM specification, it is necessary to note that a direct translation to
ASM/BSL code is not always straightforward. One reason is that the functions and rules are
not consistently available for CoreAS(I)M, and a lot of code for “getting it to run” needs to be
worked out.

4.9.2 Current Status

The requirements for credit and debit operations have been implemented and are ready for more
sophisticated tests. Also the base conditions for including further operations or requests handled
by the server can be easily extended.

A test scenario has been built which may be used later for high-level testing, where particular use
cases are played through using a predefined set of tests including agents with particular tests.

B2C-operations and also some of the other requests defined like AccountHistReq still need to be
taken care of and will be addressed in future work.

Chapter 5

Outlook and Next Steps

Paolo Dini and Eduard Hirsch

This report has provided an update on the business logic requirements of the next-generation
mutual credit transactional platform, relative to currently available technology (Chapter 2). In
the Appendix, it provides a formalization of the updated requirements. In Chapter 3 it provided a
detailed explanation of the configuration and setup of the ICEF executable modelling framework
for ASIMs and of its implementation language CoreASIM. Finally, in Chapter 4 it presented a
detailed discussion of the CoreASIM implementation of the specification shown in the Appendix.

The business logic requirements of Chapter 2 represent an intermediate step between the current
centralized system being used by SARDEX and based on a relational database and the blockchain-
based platform INTERLACE is contributing to developing. Such an intermediate step is needed
both from the point of view of engineering robustness, since migrating to a new platform is
difficult and risky, as well as because the full functionality of the blockchain platform will depend
to some extent on the architecture and protocol of the blockchain framework selected.

The implementation of the business logic as an executable CoreASIM model has also had the
added benefit to bring into focus the need for a testing framework for the ICEF, which is currently
missing. In the short term, this can be provided by manually composed testing scenarios written
in Gherkin18 and Cucumber,19since they are used by the Hyperledger blockchain development
community. In the long term, it would be helpful to develop a “compiler” from the ASIM
specification directly into Gherkin.

The next step for INTERLACE will be to specify, model (D2.2), and implement (D3.2) a blockchain
platform that supports at least part of the business logic presented in this report. We have decided
to use Hyperledger Fabric as the most suitable framework for the needs of INTERLACE and of
the Sardex circuit. In other words, we will develop a permissioned blockchain with a limited
number of nodes. However, the great flexibility and customizability of Hyperledger leaves open
the possibility of coupling the permissioned blockchain to a public permissionless blockchain at
some point in the future. Whereas this is not likely to be needed for mutual credit transactions
within a single circuit, it could be useful for supporting scalability features for inter-circuit trade.

18 https://docs.cucumber.io/gherkin/
19 https://cucumber.io/

https://docs.cucumber.io/gherkin/
https://cucumber.io/

References

References

1. E Börger and A Raschke. Modeling Companion for Software Practitioners. New York: Springer-Verlag, 2018.
2. E Börger and R Stärk. Abstract State Machines: A Method for High-Level System Design and Analysis. New York:

Springer-Verlag, 2003.
3. P Dini, E Börger, E Hirsch, T Heistracher, M Cireddu, L Carboni, and G Littera. D2.1: Requirements

and Architecture Definition. INTERLACE Deliverable, European Commission, 2017. URL: https://www.
interlaceproject.eu/.

4. E Rothstein and D Schreckling. D4.2: Human-readable, Behaviour-based Interaction ComputingSpecification Lan-
guage. BIOMICS Deliverable, European Commission, 2015. URL: http://biomicsproject.eu/file-repository/
category/11-public-files-deliverables.

5. E Rothstein Morris and D Schreckling. D5.2: Execution Framework for Interaction Computing. BIOMICS
deliverable, European Commission, 2016. URL: http://www.biomicsproject.eu.

6. J Smith and R Nair. Virtual Machines: Versatile Platforms for Systems and Processes. Morgan Kaufmann, 2005.

https://www.interlaceproject.eu/
https://www.interlaceproject.eu/
http://biomicsproject.eu/file-repository/category/11-public-files-deliverables
http://biomicsproject.eu/file-repository/category/11-public-files-deliverables
http://www.biomicsproject.eu

Appendix: Complete Functional Requirements
and Business Logic Model (2018)

Egon Börger, Paolo Dini and Luca Carboni

We specify here the refinement of the abstract model defined in Deliverable D2.1 [3] for the
Sardex core payment operations Credit, Debit and B2C (in Euro or SRD).20 The refinement
moves towards what is needed for an executable version of the model, though it still stays at the
functional requirements level of abstraction. It is based upon the additional information obtained
in the meantime on details of various system components, on specific data concerning groups,
accounts and transactions, and on the resulting intended definition of permission features. This
information is taken from Chapter 2 of this report (D3.1).

Section A.1 describes the refinement of the signature elements that were introduced in D2.1.
Section A.2 and Section A.3 refine the model for the basic credit and debit operations considered
in D2.1, Section A.4 adds the new operations between companies and consumers, called B2C
operations. Section A.5 describes the users’ input operations. To simplify the model inspection,
in a sub-appendix (Section A.6) we put all rules of the model together in a nutshell (without the
explanatory text which is to be found in the preceding sections where the rules are introduced).
Unexplained terminology and notation are used with the meanings explained in D2.1.

A.1 Signature Elements

In this section we describe the refined signature that is used for Credit , Debit and B2C operations.
The complex transferTypeCheck function, defined in D2.1 in abstract terms to specify the Credit

and Debit operations, is refined by splitting it into two independent checks (which may be thought
of as executed in sequence, as will happen in the implementation). The first check concerns the
involved source and target groups and is again called TransferTypeCheck (see Section A.1.1). The
second check concerns the types of the source and destination accounts involved and is called
AccountConnectivityCheck (see Section A.1.2).

This refinement is essentially a data refinement and concerns mainly

user groups with their characteristic attributes (called group profile metadata) and the
constraints on the groups among which transfers are allowed by the system (called transfer
type constraints), and
accounts with their charateristic attributes (called account metadata) and the constraints
on types of accounts between which an operation is allowed by the system (called account
connectivity constraints).

A.1.1 User groups: profile metadata and transfer type constraints

Groups. Out of the 29 types of users, which appear in the specification of the Sardex system as
agents (actors) that interact with the system, following Chapter 2 the refined model considers
the following 9 pairwise disjoint dynamic sets, called groups, which are characterized by the
indicated specific attributes:

Company // set of actors which participate only in B2E and B2B operations

20 We skip the account history and balance operations explained in Section 3.2 of D2.1, because they seem not to be
in the focus anymore.

INTERLACE Project (Grant no. 754494) 63

Mngr // (singleton set of) a distinguished element acting for the Sardex company
Retail // set of actors which participate only in B2C operations
Full // set of actors with both Company and Retail functionality

Employee // set of actors working for a member of Company or Full

Consumer // set of individuals which participate only in B2CEur operations
Consumer_Verified // set of registered consumers with additional B2CSrd operation

Welcome // set of users which have joined but are not yet cleared to start trading21

On_Hold // set of actors whose privileges have been suspended22

Notational convention. To simplify the exposition, we treat singleton sets, like Mngr = {mngr},
sometimes as set (here Mngr) and sometimes as element (here mngr), depending on the context,
hoping that this slight abuse of language does not create any ambiguity. In general, we write x

for elements of X where X is one of the above 9 groups. To prepare the step towards a natural
implementation of the model, we treat Welcome and On_Hold members as potential members of
some of the other groups which have however a Welcome or a On_Hold flag set, respectively.

For further reference we define Group as the set of the above nine groups:

Group =

{Company ,Mngr ,Retail ,Full ,Employee,

Consumer ,Consumer_Verified ,Welcome,On_Hold}

Since by the disjointness constraint each user is assumed to belong to exactly one group, there
is a function group(user) which yields the group to which user belongs.

Group Profile Metadata. Each group comes with a set of attributes (called metadata) that are
characteristic for its members. They include the following five data types which are used in the
refined model as ‘profile metadata’ (besides the usual ‘identity metadata’ described in Chapter 2,
which provide the information on the ID of a group member, its e-mail address, phone numbers,
also its legal name, address, gps, fiscal ID (VAT), etc.).

Company , Retail (and therefore also Full) and Welcome members (but not the Mngr) come with
a capacity , a location whose value represents the maximum yearly SRD volume the member
committed to selling, with payment in SRD, when it stipulated its contract with the Sardex
company. The date of the stipulation of capacity is recorded in a location capacityDate.

• For a given account (typically in CC, see below Section A.1.2), a derived parametrized loca-
tion introduced in Chapter 2 as belonging to AccountMetadata, availableCapacity(account),
is defined as follows:23

availableCapacity(account) = capacity − saleVolume(account)

where the dynamic function saleVolume(account) indicates the current total volume of sales
per year24 using that account .

21 To have joined means having signed the contract to become a member of Company ∪ Retail ∪ Full .
22 Members of Retail , Company , Full , Employee, and Consumer_Verified can be suspended, not the mngr . For Welcome

and Consumer the concept does not apply since they are not allowed to transact yet in any case.
23 The defining equation for availableCapacity holds only for non-Welcome members, which – differently from Welcome

members (see Table 4) – have a defined account ; it holds for Welcome members only once they have been assigned
an account .

24 This implies that availableCapacity(account) is implicitly parametrized by the year.

64 D3.1

Company (and therefore also Full) members and Mngr come with a creditPercent location
whose value represents the percentage of payments accepted by the member in circuit
currency (SRD, etc.) for transactions whose value is above 1000 Euro.
Company and Retail (and therefore also Full) members come with a euroFee location.
• For Company its value indicates an InterTradeEuroFee for inter-circuit sales in the non-Euro

currency of the circuit (SRD for Sardex, VTX for Venetex, etc).
• For Retail its value indicates a B2CEuroFee for B2C sales in EUR.
• For Full its value is a two-element set {InterTradeEuroFee,B2CEuroFee}.

A B2CEuroFee is a function which yields the percentage of the total value of the B2C sale, to
be paid by the selling retailer to the Sardex company.
An InterTradeEuroFee can be of two kinds. Either it is a function that simply yields 3% of the
intertrade amount, regardless of the networks involved and their members. Or it is a dynamic
function fee(amount ,network1,network2) which yields a percentage of the trade amount that
may depend on the networks involved. In the current model, only the buyer has to pay the
fee, though it is contemplated for a future extension that also the seller will have to pay a fee.
Both Full and Retail members come with two locations: rewardRate and acceptanceRate. The
rewardRate value is a function which yields the percentage of reward the member offers in
SRD currency to consumers engaged in a B2CEur purchase with the member; similarly, the
acceptanceRate defines the percent rate of the total value of a consumer purchase at which the
member accepts SRD currency.

The transferTypeCheck function defined in D2.1 uses a Match predicate which expresses con-
straints on a) the groups of the account owners for the considered operation and on b) the type
of the two accounts involved, in addition to c) constraints on the value of a set of meta-data, which
in D2.1 were called ‘custom fields’. The constraints on the groups involved are refined here by a
function of the following type:

TT : Operation × Currency ×Group → {G | G ⊆ Group}

where Operation = {Credit ,Debit} and Currency = {SRD ,EUR}. To simplify the exposition, we
follow Figure 2.7 and define TT by a case distinction, considering the given pair of the first two
arguments, say op ∈ {Credit ,Debit} and cur ∈ {SRD ,EUR}. Formally,

TT (op, cur , group) = TT op,cur (group).

For each group, say fromGroup of buyers, TT op,cur (fromGroup) defines the set toGroups of groups
of sellers whose members are allowed to receive a transfer (to one of their accounts) from (an
account of) a fromGroup member via the operation op in the currency cur (under appropriate
constraints we specify below on the amount of the transfer and some metadata of the account
involved).25 We now define the requirements described for these functions.

Transfer Type Constraints for TT Credit ,SRD . A Credit operation in SRD currency can be started
only by members of one of the following groups (called source group or fromGroup of the
operation):

Company , and therefore also Full and in particular Mngr ,
Employee,
Consumer_Verified .

For SRD Credit operations the following groups are allowed as target group (read: group of the
member receiving the SRD credit, also called toGroup26):

25 In D2.1 the names fromMemberGroup and toMemberGroup were used, see the Match predicate definition there.
26 See Figure 2.7.

INTERLACE Project (Grant no. 754494) 65

every Company ∪ Full ∪Mngr member can trigger an SRD Credit operation to a member of
Company ∪ Full ∪Mngr or of Employee,
every Employee member can trigger an SRD Credit operation to a member of
Company ∪ Retail ∪ Full ,
every Consumer_Verified member can trigger an SRD Credit operation to a member of
Retail ∪ Full .

This requirement is expressed in the refined ASM model by the following function definition:

TT Credit ,SRD(Company)

= TT Credit ,SRD(Full)

= TT Credit ,SRD(Mngr)

= {Company ,Full ,Mngr ,Employee}
TT Credit ,SRD(Employee) = {Retail ,Company ,Full}
TT Credit ,SRD(Consumer_Verified) = {Retail ,Full}

Note that this definition, which will be used below for the transfer type check, allows no Credit

operation with target group On_Hold . But note that a Retail , Company or Full can have its
creditLimit set to 0 (by a broker operation we do not model here) which does not prevent that
user from receiving credits for sales.

For ease of reference we say that a group member MayAllowTransferForCreditOpns if it is an
element of a group where TT Credit ,SRD has a defined value:27

MayAllowTransferForCreditOpns(mbr) ⇐⇒
mbr ∈ Company ∪ Full ∪Mngr ∪ Employee ∪ Consumer_Verified

Transfer Type Constraints for TT Debit ,SRD .

A Debit operation in SRD currency can be started only by members of one of the following groups
(called again source group or fromGroup of the operation):

Retail , Company , and therefore also Full and in particular Mngr ,
Employee,
Consumer_Verified .

For SRD Debit operations the following groups are allowed as target groups (again called
toGroup28):

Every Company ∪ Full ∪Mngr can initiate an SRD Debit operation that draws on a member of
Company ∪Full (and the latter could initiate a corresponding credit transfer to the former, for
the same effect).
The mngr can initiate an SRD Debit operation that draws on any member of Retail .
Every member of Retail ∪ Company ∪ Full can initiate an SRD Debit operation that draws on
any Employee.

27 Using the group(mbr) function which denotes the unique group to which mbr belongs, the definition can be
equivalently expressed by:

MayAllowTransferForCreditOpns(mbr) ⇐⇒ group(mbr) ∈ {Company ,Full ,Mngr ,Employee,Consumer_Verified}

28 See Figure 2.7.

66 D3.1

Every member of Retail ∪Full can initiate an SRD Debit operation that draws on any member
of Consumer_Verified .

Every member of Company ∪ Full can initiate an SRD Debit operation that draws on mngr .

This requirement is expressed in the refined ASM model by the following function definition:

TT Debit ,SRD(Company)

= TT Debit ,SRD(Full)

= {Company ,Full ,Mngr}
TT Debit ,SRD(Retail) = Mngr

TT Debit ,SRD(Employee) = {Retail ,Company ,Full}
TT Debit ,SRD(Consumer_Verified) = {Retail ,Full}
TT Debit ,SRD(Mngr) = {Company ,Full}

Correspondingly we define the domain predicate of TT Debit ,SRD :

MayAllowTransferForDebitOpns(mbr) ⇐⇒
mbr ∈ Retail ∪ Company ∪ Full ∪ Employee ∪ Consumer_Verified ∪Mngr

Transfer Type Constraints for operations in Euro. In the Sardex system, no Credit operations
are allowed in EUR currency, so that no function TT Credit ,EUR is needed.29 A EUR Debit operation
can be triggered only by a Consumer or a Consumer_Verified member and must have as target
group Retail or Full . This requirement is expressed in the refined ASM model by the following
definition:

T Debit ,EUR(Consumer) = T Debit ,EUR(Consumer_Verified)

= {Retail ,Full}

In the present formulation of the model we do not use the function T Debit ,EUR because, to simplify
the exposition in Section A.4, we describe the B2C operations there directly, not as instance of
the DebitTransferReq rules.

Remark on the refinement. With the above definition of functions TT op,cur , the transfer
type part of the Match predicate in D2.1 can be expressed as follows. By definition, the
currency parameter of the amount in question can be computed from the account by the function
cur(account) (for accounts see Section A.1.2). Furthermore, given that each member belongs to
exactly one group, from the account parameters from/to we also obtain group(owner(from/to)) in
the following refinement of the group type constraints, namely owner(from) ∈ fromGroup(tt) and
owner(to) ∈ toGroup(tt):

let transfer = (op, channel , from, to, amount ,metaData)

TTMatch(transfer) iff

forsome g ∈ TT (op, cur(from), group(owner(from))) owner(to) ∈ g

Note that the transfer type check is independent of the channel used for a transfer.30

29 Table 8 includes the function but shows that it is completely undef ined.
30 The model in D2.1 was based on the assumption that channels could play a role for the transfer type check,

though the constraints had not been specified. Therefore an abstract channel condition appeared there in the
Match predicate in D2.1, which is not present anymore here.

INTERLACE Project (Grant no. 754494) 67

A.1.2 Account types, account metadata and account connectivity constraints.

Account Types. Each user may have a set Account(user) of accounts each of which the user is
the owner(acc) of (also denoted MemberId(acc)), but at most one account per account type. Each
account is in one currency cur(acc) ∈ Currency = {SRD ,EUR} and of an accountType(acc), defined
for the group to which the user belongs, among the following seven ones that are considered in
the refined model. There are two SRD account types:

CC: the set of standard Sardex credit accounts, in SRD

Domu: the set of Sardex credit accounts for larger operations, in SRD

There are three types of EUR accounts, which are considered to be of statistical character:

Income: the set of (statistical) accounts owned by Retail or Full users, which use such an
account to record their collection of B2C payments in Euro.

Prepaid: the set of (statistical) accounts from which the Euro transaction fee for a B2C
operation is drawn by SysAdmin on behalf of the mngr .31 Prepaid is owned by Retail or Full

members but controlled by SysAdmin.

Bisoo: the set of (statistical) accounts in Euro which are used by consumers to pay into an
Income account. Bisoo is owned by Consumer or Consumer_Verified members but controlled
by SysAdmin.

There are two special mngr account types:

Mirror: type of account in circuit currency (SRD, VTX, etc.) used for inter-circuit purchases.
There is one mirror account per circuit so that, formally, each Mirror account is implicitly
parametrized by a circuit.

Topup: a (statistical) account in Euro, which is mngr -owned and SysAdmin-controlled32 and
used to recharge a retailer’s Prepaid account upon receipt of a (real) payment in Euro (through
normal banking channels).

We treat each account type as the set of accounts of that type and say that accountType(acc) is X

if acc ∈ X , where X is one of the seven account types above.33 We also write x for elements of
X , where X is one of the above 7 account types. For the singleton set Topup = {topup} we use
the same notational convention as explained above for Mngr = {mngr}. For the set of the above
7 account types we write:

AccountType = {CC ,Domu, Income,Prepaid ,Bisoo,Mirror ,Topup}

Initially, accounts are assigned to users satisfying the following constraints on Account(x),
depending on the user group X the user x belongs to:34

Account(company) = {cc(company), domu(company), prepaid(company)}35

31 Differently from Income accounts, any Prepaid account is updated not by the retailer, for which it keeps track of its
fee prepayments, but by the mngr . See Figure 2.10 (B2C Use Case 1/2) and Section A.4.2 for details.

32 See Figure 2.10 (B2C Use Case 1/2).
33 In D2.1 the names creditAccount , domuAccount , feeAccount were used instead of CC , Domu, Prepaid .
34 The accounts of type Prepaid , Bisoo and Topup are not controlled by the corresponding member for which they

serve but by the SysAdministrator, see below.
35 Please see note after Table 4 for the accounts of company .

68 D3.1

Account(retail) = {cc(retail), prepaid(retail), income(retail)}
Account(full) = {cc(full), domu(full), prepaid(full), income(full)}

Account(mngr) = {cc(mngr), topup} ∪ {mirror(circuit) | circuit ∈ Circuit}

Account(employee) = {cc(employee)}
Account(consumer) = Account(consumer_verified) = {cc(consumer)}36

Remark. Welcome members initially have no account yet (formally meaning Account(welcome) =

∅). The initial accounts of a user ∈ On_Hold are those accounts the user has at the moment it is
placed into On_Hold , but by being placed there the user becomes unable to use these accounts.

Account Metadata. Account metadata are used to formulate the constraints for allowed transfer
amounts, which involve various account attributes like the balance, the creditLimit , the upperLimit ,
the capacity , etc.

Every account has the locations owner(acc) and curr(acc) (which is also called unit(acc))
introduced above. For Bisoo and Topup accounts these are the only locations needed in the refined
model, so for them there are no other metadata.

In addition, for each account in CC ∪ Domu ∪Mirror there are the following locations, classified
as metadata:

balance (a Real number, modelled as 2-digit decimal)
creditLimit (a non-negative number)37

availableBalance, a derived location required to be non-negative and defined by:

availableBalance = balance + creditLimit .

In addition, CC and Mirror (but not Domu) accounts have the following location:

upperLimit denoting the upper balance limit, a positive number.

In connection with balance and saleVolume, there are three predicates which trigger an alert when
the monitored item reaches its (low or high) bound:

LowBalanceAlert iff creditLimit + balance < lowBalanceAlert

// small amount of money left in the account to buy something with
HighBalanceAlert iff upperLimit − balance < highBalanceAlert

// small amount of space (measured in money unit) left for further sales
HighVolumeAlert iff capacity − saleVolume < highVolumeAlert

// almost reached yearly committed sale volume

Income and Prepaid accounts have, besides owner(acc) and curr(acc), also the balance location.
Note that a Prepaid account has no creditLimit ; otherwise stated, its credit limit is always 0.

36 Contrary to Table 4, in this model no Bisoo account is assigned since for simplicity we treat consumer -provided Euro
payments directly as input, using a monitored Received predicate. Then no Bisoo account is needed. See Section
A.4.1.

37 Table 9 includes also a creditLimitDate location, indicating the date at which the credit limit was set. We skip such
locations because no operation has been specified which uses them, so that there is no rule in the model which
involves them.

INTERLACE Project (Grant no. 754494) 69

Account Connectivity Constraints for user-initiated operations. The account connectivity
constraints serve to describe the account type conditions which are part of the Match predicate
defined in D2.1. To keep the model as simple as possible, we describe the intended effect of the
new B2C operations in Section A.4.1 separately, so that we can limit ourselves here to formulate
the account connectivity refinement only for user-initiated transactions.

The requirements on the types of the accounts that may be involved in an operation state which
account types are allowed as toAcc for an operation of a given fromAcc. They can be formalized
using an account type check AccT analogous to the transfer type check function TT above.

The essential requirement for user-initiated Credit or Debit operations is two-fold (see Figure
2.12):

A Credit operation in SRD that starts at a fromAcc in CC ∪Domu ∪Mirror has as allowed toAcc

a CC account; in the case of fromAcc ∈ CC , also a Domu or Mirror account is permitted as
toAcc.

A Debit operation in SRD can only start from a fromAcc ∈ CC and must have a toAcc ∈ CC .

One can formalize the above requirements by defining the function

AccT : Operation × Currency ×AccountType → {Acct | Acct ⊆ AccountType}

again by a case distinction AccT (op, cur , accountType) = AccT op,cur (accountType), where:

AccT Credit ,SRD(CC) = {CC ,Domu,Mirror}
AccT Credit ,SRD(Domu) = AccT Credit ,SRD(Mirror) = {CC}
AccT Debit ,SRD(CC) = {CC}.

As above, for ease of reference we say that an account MayStartCredit/DebitOpns if it is an
element of an account type where AccT Credit/Debit ,SRD has a defined value:

MayStartCreditOpns(acct) iff acct ∈ CC ∪Domu ∪Mirror38

MayStartDebitOpns(acct) iff acct ∈ CC .39

Remark on Bisoo. In Section 2.3.4 also Debit operations in EUR from an Bisoo to an Income

account are allowed. Formally this means that in the definition above one includes the clause

AccT Debit ,EUR(Bisoo) = {Income}.

Since in rule EurB2C below (Section A.4.1) we provide a direct formalization of the B2C
operation, we can do without the Bisoo account and without any Debit operation in EUR from
a Bisoo to an Income account.

Remark on system-initiated Credit/Debit operations. In Figure 2.13 the AccT function is
defined also for system-initiated operations. AccT with first argument Credit is defined by:

AccT Credit ,SRD(CC) = {CC}
AccT Credit ,EUR(Topup) = {Prepaid}

38 For the reason explained in the next remark we exlude Income accounts from this definition.
39 Remember that we model here only Debit operations in SRD, not in EUR.

70 D3.1

AccT with first argument Debit is defined by:

AccT Debit ,EUR(Prepaid) = {Topup}

Remark on the refinement. With the above definitions one can redefine the account connec-
tivity constraint part of the Match predicate of D2.1, namely sourceType(tt) = accountType(from)

and destType(tt) = accountType(to), as follows:

let transfer = (op, channel , from, to, amount ,metaData)

AccTMatch(transfer) iff accountType(to) ∈ AccT (op, cur(from), accountType(from))

A.2 Credit Operation

Here we define the (refined version from D2.1 of) user-initiated Credit operations in SRD.
Similarly to user-initiated Debit operations in SRD, they use either a Service channel (website
or mobile phone) or a PointOfSale (POS), the set of standard terminals used by retailers for
EUR transactions or to route SRD transactions via an API. This is a mere renaming w.r.t. the
terminology used at the time of writing of D2.1:

Channel = Service ∪ POS

Service = {website,mobilePhone}

In the refined model there is also a system-initiated Credit operation in Euro which involves
Topup and Prepaid accounts. Since it does not involve the various transfer type checks, it can be
modelled in a simpler way (see Section A.4).

As in D2.1, a CreditTransferReq initiated by a member mbr (which is permitted only in SRD
currency) splits into a double exchange of messages between the member and the Sardex system,
called preview and perform step.

CreditTransferReq((channel , from, to, amount),mbr) =

CreditPreviewReq((channel , from, to, amount),mbr)

CreditPerformReq((channel , from, to, amount),mbr)

A user-initiated Credit operation transfers an amount of SRD via a specific channel from one
account from to another to under a certain number of conditions:

if the account owners belong to groups of permitted types, as specified by the transfer type
check function TT Credit ,SRD ,
if the involved accounts from, to are of permitted types, as specified by the account
connectivity check function AccT Credit ,SRD ,
if the amount satisfies the constraints on the various applicable limits, as specified by the
AccountLimitCheck .

A.2.1 CreditPreviewReq program

The various constraints split again in a series of to-be-checked more detailed conditions. To
reflect the transactional nature of the CreditTransferReq steps, we describe the execution of
each of its two components as one atomic step. Nevertheless, to simplify the verification of
the correctness and completeness of the rules, we formulate the entire check as successive

INTERLACE Project (Grant no. 754494) 71

If-Then-Else checks of all its single conditions. As a byproduct we obtain a detailed analysis
of the possibilities for error handling procedures one may wish to implement. Thus we define
CreditPreviewReq and CreditPerfomReq using an instance of the IfThenElseCascade pattern (see
Sub-Appendix A.7).

Furthermore, since it is required that the credit type checks in CreditPreviewReq be repeated
for CreditPerformReq, we make the nested credit type check pattern explicit as a machine
CreditTypeCheck which contains as parameter a final Completion step. The Completion com-
ponent parameter can then be instantiated specifically for the two rules: for the preview step it
comes up to inform the user that the CreditPerformReq can be triggered, whereas for the perform
step it specifies the required AccountLimitCheck.

CreditTypeCheck(transfer ,mbr ,Completion) =
if mbr = owner(from) and MayAllowTransferForCreditOpns(mbr) then

if forsome g ∈ TT Credit ,SRD(group(mbr)) owner(to) ∈ g then // check transfer type
if MayStartCreditOpns(from) then // check account connectivity

if accountType(to) ∈ AccT Credit ,SRD(accountType(from)) then

Completion(transfer)

else Send(ErrMsg(CreditTargetAccountViolation(transfer)), to : mbr)

else Send(ErrMsg(CreditSourceAccountViolation(transfer)), to : mbr)

else Send(ErrMsg(CreditTargetGroupViolation(transfer)), to : mbr)

else Send(NotAccountOwnerOrCreditSourceGroupViolation(transfer), to : mbr)

where

transfer = (credit , channel , from, to, amount)

Now we can define CreditPreviewReq as a CreditTypeCheck instance where the Completion
parameter is instantiated to what is needed here, namely to PermitPerformReq by Sending a
message that the CreditPerformReq can be submitted successfully.

CreditPreviewReq((channel , from, to, amount),mbr) =

let transfer = (credit , channel , from, to, amount)

if Received(CreditPreviewReq(transfer), from : mbr)40 then

CreditTypeCheck(transfer ,mbr ,PermitPerformReq)
Consume(CreditPreviewReq(transfer))

where

PermitPerformReq(transfer) =

Send(YouMayTriggerPerformReq(transfer), to : owner(from))

A.2.2 CreditPerformReq program

Similarly, the CreditPerformReq rule uses an instance of CreditTypeCheck, where the parameter
Completion is instantiated to a rule CreditAccountLimitsCheck. In other words, to execute
CreditPerformReq, first the CreditTypeCheck is executed once more, but if it succeeds, to
complete the operation, instead of Send(YouMayTriggerPerformReq(transfer), to : owner(from)),
a rule CreditAccountLimitsCheck is called to TryToCompleteCreditOpn. That rule specifies
the check of the various constraints on the amount of the Credit operation, i.e. it refines
the balancecheck function of D2.1. Like CreditTypeCheck, it is an IfThenElseCascade pattern
instance and also comes with a Completion parameter. For CreditPerformReq this parameter
is instantiated by a CompleteTransaction component.

40 Given the account owner function, one could omit here the mbr parameter and write instead owner(from).

72 D3.1

CreditPerformReq((channel , from, to, amount),mbr) =

let transfer = (credit , channel , from, to, amount)

if Received(CreditPerformReq(transfer), from : mbr) then

CreditTypeCheck(transfer ,mbr ,TryToCompleteCreditOpn)
Consume(CreditPerformReq(transfer))

where

TryToCompleteCreditOpn(transfer) =

CreditAccountLimitsCheck(transfer ,CompleteTransaction(transfer))

CreditAccountLimitsCheck checks the following data for the given amount :

the availableBalance of the source account from (as already formulated in D2.1), where from

must be (and by the account connectivity check is known to be) a member of CC ∪ Domu ∪
Mirror ,

the upperLimit of the target account to (as already formulated in D2.1), where by the account
connectivity check to is known to be a member of CC ∪Mirror ∪ Domu, but by the account
metadata definition cannot be an element of Domu (accounts without upperLimit location),

the availableCapacity of the target account, where by the account metadata definition the
target account (which by the account connectivity check is known to be an element of
CC ∪ Mirror ∪ Domu) must not be a Domu account (because Domu accounts have no
availableCapacity location).

Remark on creditPercent . The main use of the creditPercent location is for statistical purposes,
namely to compare the average EUR volume moved by the SRD volume in a given year. However,
this feature is not currently implemented and will not be implemented in the CoreASIM model
either.

CreditAccountLimitsCheck(transfer ,CompletionStep) =
if CanBeSpentBy(from, amount) then

if CanBeCashedBy(to, amount) then

if HasSellCapacityFor(amount , to) then

CompletionStep
else Send(ErrMsg(CapacityViolation(transfer)), to : owner(from))

else Send(ErrMsg(UpperLimitViolation(transfer)), to : owner(from))

else Send(ErrMsg(AvailBalanceViolation(transfer)), to : owner(from))

where

transfer = (credit , channel , from, to, amount)

CanBeSpentBy(from, amount) iff availableBalance(from) ≥ amount

CanBeCashedBy(to, amount) iff to 6∈ Domu and balance(to) + amount ≤ upperLimit(to)

HasSellCapacityFor(amount , to) iff to 6∈ Domu and amount ≤ availableCapacity(to)41

The CompleteTransaction component still remains rather abstract, as in D2.1, until we obtain
more information on the Ledger and the used transaction function (which records the information
on the transfer that is appended to the Ledger , including a time stamp which we describe by a 0-
ary system function now). However, by the knowledge of the transfer and account type functions
TT , accountType we can refine what in D2.1 was called the transfer type check result ttResult ,
namely the triple consisting of the group the owner(to) belongs to and of the accountType of the
source and target accounts.

41 Here we treat availableCapacity as belonging to AccountMetaData, as shown in Table 9.

INTERLACE Project (Grant no. 754494) 73

CompleteTransaction(transfer) =

let (credit , channel , from, to, amount) = transfer

Append(transaction(transfer , ttResult ,now),Ledger)

Send(Confirmed(transfer), to : owner(from))

saleVolume(to) := saleVolume(to) + amount42

where

ttResult = (group(owner(to)), accountType(from), accountType(to))

Historical remark. At the time of writing the description of the model in D2.1, the understanding
was that the (at the time otherwise not further specified) custFlds parameter, which now would
be renamed metadata, plays a role for the CreditPreviewReq rule. We now know that for the
behaviour of this rule only the group and account type properties are relevant so that the
parameter can be skipped. Similarly for CreditPerformReq.

Remark on Function Append. The conceptual heart of the Credit or Debit operation is the
Append function shown above. Following common practice, we do not hold user balances in the
ledger, we simply record the amount of the transactions along with the other essential parameters
shown by appending this information to the ledger. If a user balance is required at any one point
in time, it will need to be calculated in real time when the request is made. As a consequence, for
a Credit operation performed by userA as the payment of amount to userB , the intuitively obvious
double-entry book-keeping operation

balance(acct(userA)) = balance(acct(userA))− amount

balance(acct(userB)) = balance(acct(userB)) + amount

does not appear at all, it is only implicit.

A.3 Debit Operation

As explained in D2.1, user-initiated Debit operations in SRD are executed in 3 phases: in
addition to the DebitPreviewReq and the DebitPerformReq steps, where the system and the
creditor interact with each other similarly to the interaction for Credit operations, there is an
interaction between the system and the debitor where the system asks for an acknowledgement
from the debitor before performing the DebitAckReqAnswCompletion (or in case of failure a
DebitLateAckReqAnswCompletion) step. Therefore we have:

DebitTransferReq =

DebitPreviewReq
DebitPerformReq
DebitAckReqAnswCompletion
DebitLateAckReqAnswCompletion

Remark on Debit operations in Euro. In the refined model there are also two Debit operations
in Euro. One is system-initiated and involves Topup and Prepaid accounts, the other one is user-
initiated and involves Bisoo and Income accounts. Since these two operations do not need the
various transfer type checks, they can be modelled in a simpler way than by treating them as
instances of DebitPreviewReq (see Section A.4).

42 We treat the dynamic function saleVolume as belonging to AccountMetaData, in accordance with Table 9.

74 D3.1

A.3.1 DebitPreviewReq program (for SRD)

In this section we consider Debit operations in SRD. We treat the Debit operations in EUR
separately in Section A.4.

As for Credit operations, the DebitPreviewReq step essentially performs a DebitTypeCheck on
the creditor and debitor groups and on the permitted type of the accounts involved.43 For a Debit
operation TT is applied to group(debitor) and yields the allowed creditor groups, to one of which
the creditor must belong. By Figure 2.3, the account connectivity check for SRD-Debit operations
checks whether the accounts from, to to be used for the intended Debit operation are both of
type CC. If the outcome of the two checks is positive, DebitPreviewReq calls as completion a
PermitPerformReq component which enables the creditor to proceed to the DebitPerformReq
phase.

DebitPreviewReq((channel , from, to, amount), creditor) =

let transfer = (debit , channel , from, to, amount)

if Received(DebitPreviewReq(transfer), from : creditor) then

DebitTypeCheck(transfer , creditor ,PermitPerformReq)
Consume(DebitPreviewReq(transfer))

where

PermitPerformReq(transfer) =

Send(YouMayTriggerPerformReq(transfer)44, to : owner(to)45)

The DebitTypeCheck machine follows the same pattern as CreditTypeCheck.

DebitTypeCheck(transfer , creditor ,Completion) =
let (debit , channel , from, to, amount) = transfer

let debitor = owner(from)

if creditor = owner(to) and MayAllowTransferForDebitOpns(debitor) then

if forsome g ∈ TT Debit ,SRD(group(debitor)) creditor ∈ g // check transfer type then

if MayStartDebitOpns(to) then // check accont connectivity to ∈ CC

if accountType(from) ∈ AccT Debit ,SRD(accountType(to)) // i.e. from ∈ CC then

Completion(transfer)

else Send(ErrMsg(DebitTargetAccountViolation(transfer)), to : creditor)

else Send(ErrMsg(DebitSourceAccountViolation(transfer)), to : creditor)

else Send(ErrMsg(DebitTransferTypeViolation(transfer)), to : creditor)

else Send(ErrMsg(NotAccountOwnerToReceiveDebit(transfer)), to : creditor)

A.3.2 DebitPerformReq program

To define DebitPerformReq, we reuse the scheme applied for CreditPerformReq, calling once
more the DebitTypeCheck component executed already by DebitPreviewReq, but with a new
Completion parameter whose role is to trigger a DebitAccountLimitsCheck and – if that check
succeeds – a RequestDebitAcknowledgement from the debitor .

DebitPerformReq(transfer , creditor) =

if Received(DebitPerformReq(transfer), from : creditor) then

43 Note: the argument fromGroup in TT (fromGroup) is the debitor for both Credit and Debit operations.
44 This message, by its parameter debit , differs from the message with same name YouMayTriggerPerformReq used in

the rule CreditPreviewReq where the corresponding parameter is credit .
45 creditor , the sender of the request, can be retrieved from transfer by the account owner function via creditor =

owner(to), which is the seller who will receive the transfer of SRD from the buyer owner(from).

INTERLACE Project (Grant no. 754494) 75

DebitTypeCheck(transfer , creditor ,TryToCompleteDebitOpn)
Consume(DebitPerformReq(transfer))

where

transfer = (debit , channel , from, to, amount)

TryToCompleteDebitOpn(transfer) =

DebitAccountLimitsCheck(transfer ,RequestDebitAck(transfer))

DebitAccountLimitsCheck is structurally similar to the CreditAccountLimitsCheck (and uses its
definitions for the three check predicates), but it has a different parameter to be called in case
the check is successful, namely to RequestDebitAcknowledgement from the debitor (see below)
before completing the transaction either successfully, by a DebitAckReqAnswCompletion, or in
the failure case by a DebitLateAckReqAnswCompletion.

This leads to the following definition. To prevent confusion we use a new name NextStep for
the parameter. Note that for privacy reasons, the definition of the content of an ErrMsg(param)

(which has to be defined separately) may have to hide some of the information the system knows
in case of the given parameters.

DebitAccountLimitsCheck(transfer ,NextStep) =
let (debit , channel , from, to, amount) = transfer

let debitor = owner(from), creditor = owner(to)

if CanBeSpentBy(cc(debitor), amount) then

if CanBeCashedBy(cc(creditor), amount) then

if HasSellCapacityFor(amount , cc(creditor)) then

NextStep
else Send(ErrMsg(SellCapacityViolation(transfer)), to : creditor

else Send(ErrMsg(UpperLimitViolation(transfer)), to : creditor

else

Send(ErrMsg(AvailBalanceViolation(transfer)), to : debitor)

Send(ErrMsg(DebitorHasSomeProblemWith(transfer)), to : creditor)

The machine RequestDebitAck completes the transaction without further ado if the amount

is Small (less than 100), namely by appending it to the Ledger (using the system location
for the current system time, denoted now). For every other amount , RequestAck creates a
OneTimePassword otp (using the current system time, denoted by now), records its birthtime (the
beginning of its lifetime), records the otp with the transaction (including the computed transfer
type) as a PendingTransaction, and sends the otp with an agreement request to the debitor . To
execute DebitAckReqAnswCompletion a DebitAckMsg must arrive; if such a message does not
arrive within the lifetime of otp, DebitLateAckReqAnswCompletion will be executed.

RequestDebitAck(transfer) =

let (debit , channel , from, to, amount) = transfer

let debitor = owner(from), creditor = owner(to)

if Small(amount) // case where no acknowledgement from debitor is requested then

CompleteTransaction(transfer)

else

let otp =new (OneTimePassword)

let pendingTransact = (otp, transfer)

birthTime(otp) := now // current system time
Insert(pendingTransact ,PendingTransaction)

status(pendingTransact) := pending

76 D3.1

Send(ConfirmationReq(pendingTransact), to : debitor)46

where

Small(amount) iff amount < 100

CompleteTransaction(transfer)47 =

Append(transaction(transfer , ttResult ,now),Ledger)

Send(Confirmed(transfer), to : debitor)

Send(Confirmed(transfer), to : creditor)

saleVolume(creditor) := saleVolume(creditor) + amount

ttResult = (group(creditor),CC ,CC)

A.3.3 DebitAck/RejectCompletion programs

Debit completion when debitor answers ConfirmationReq

Case 0. When an AnswerMsg(pendingTransact) arrives from the debitor, but the pendingTransact (the acknowl-
edgement request data together with the otp) does not exist in the receiver’s database, an error handling
procedure is called.

Case 1. When, for a pending transaction t , the ConfirmationReq(t) is answered by the debitor too late, an error
message informing that the otp expired is sent to the debitor and the creditor and the message is discarded. In
this case, the DebitLateAckReqAnswCompletion rule below will delete the pending t together with its otp and
update status(t) to rejected .

Case 2. The ConfirmationReq(t) is answered by the debitor in time, i.e. within the lifetimeForOTPs foreseen for
one-time passwords, but negatively by a DebitRejectMsg . In this case the pending t together with its otp is deleted
and the pending transaction made rejected .

Case 3. The ConfirmationReq(t) is answered by the debitor in time and positively. Then the system will
CompleteTransaction and update the transaction status from pending to performed , but only after a new
FinalDebitAccountLimitsCheck has succeeded.

Refining the machine DebitAccountLimitsCheck in this way guarantees that, in case of failure,
the Debit operation is rejected. Therefore, in every case the status of the pending transaction is
changed to either performed or rejected so that the one-time password can be deleted, preventing
a later application of the DebitLateAckReqAnswCompletion rule (which will be applied in case of
an Expired(otp)).

DebitAckReqAnswCompletion =

if Received(AnswerMsg(pendingTransact), from : debitor) then

if pendingTransact 6∈ PendingTransaction // otp(pendingTransact) does not exist then

HandleMissingOtpError(pendingTransact)

else

let (otp, (debit , channel , from, to, amount)) = pendingTransact

let debitor = owner(from), creditor = owner(to)

if Expired(pendingTransact) then

Send(ErrMsg(ExpiredOtpFor(DebitAck , amount , creditor)), to : debitor)

Send(ErrMsg(ExpiredOtpFor(DebitAck , amount , creditor)), to : creditor)

else if IsDebitRejectMsg(AnswerMsg(pendingTransact)) then

Delete(pendingTransact ,PendingTransact)

status(pendingTransact) := rejected

Send(RejectionMsg(Debit , amount , debitor), to : creditor)

46 There is no need to keep the channel parameter because the confirmation request can be sent through any channel,
not necessarily the one through which the Debit request arrived, and also the acknowledgement can arrive via any
channel.

47 This machine is structurally the same but differs from the one with the same name used in CreditPerformReq by
the debit parameter (instead of credit).

INTERLACE Project (Grant no. 754494) 77

else if status(pendingTransact) = pending48 then

FinalDebitAccountLimitsCheck
(pendingTransact ,CompleteTransaction(pendingTransact))

Delete(pendingTransact ,PendingTransact) // otp ‘expires when used’
Consume(DebitAckMsg(pendingTransact))

where

Expired(pendingTransact) iff now − birthtime(pendingTransact) > lifetimeForOTPs

CompleteTransaction(pendingTransact) =

CompleteTransaction(debit , channel , from, to, amount)49

status(pendingTransact) := performed .

The FinalDebitAccountLimitsCheck refines the DebitAccountLimitsCheck by inserting into the
failure cases a clause which makes the pending Debit transaction rejected and informs the
creditor about the reason for rejection. Using the let clause in the definition relies on the
assumption (which can be checked to be true for the model) that each time the submachine
FinalDebitAccountLimitsCheck is called in the program, it is called with the expected correct
parameters.

FinalDebitAccountLimitsCheck(pendingTransact ,NextStep) =
let (otp, transfer) = pendingTransact

let (debit , channel , from, to, amount) = transfer

let debitor = owner(from), creditor = owner(to)

if CanBeSpentBy(cc(debitor), amount) then

if CanBeCashedBy(cc(creditor), amount) then

if HasSellCapacityFor(amount , cc(creditor)) then

NextStep
else RejectTransactionBecauseOf(SellCapacityViolation, pendingTransact)

else RejectTransactionBecauseOf(UpperLimitViolation, pendingTransact)

else RejectTransactionBecauseOf(AProblemAtDebitor , pendingTransact)

where

RejectTransactionBecauseOf(reason, pendingTransact) =

Send(ErrMsg(reason(transfer)), to : creditor)

status(pendingTransact) := rejected

Debit rejection upon missing debitor’s answer to ConfirmationReq

In case the debitor does not confirm the Debit request within the lifetime foreseen for OTPs, the
Sardex system will reject the DebitPerformReq (by changing the status of the pending transaction
to rejected) and inform the creditor about it.

DebitLateAckReqAnswCompletion =

if t ∈ PendingTransaction and Expired(t) then

let t = (otp, transfer) // NB: otp is unique
let (debit , channel , from, to, amount) = transfer

Delete(t ,PendingTransaction)

if status(t) = pending then

status(t) := rejected

48 Otherwise, following the requirements, the message is just discarded, nothing else happens to the pending
transaction with its otp. In D2.1 the possibility to send out an error message was considered.

49 Since the number of parameters in these two uses of CompleteTransaction is different, it may appear that we
are using some form of overloading. However, there is only one definition of this function, a couple of pages back
(although that definition is for credit and here we are doing a debit). Therefore, the use here is just the same function
call specified at two different levels of abstraction.

78 D3.1

Send(RejectMsg(Debit , amount , debitor), to : creditor)

Send(OtpExpiredMsg(Debit , amount , creditor), to : debitor)

where debitor = owner(from), creditor = owner(to)

A.4 New B2C operations

The new account types Income, Prepaid , Bisoo and Topup serve for three new operations:

An EurB2C operation triggered by a consumer or a consumer_verified and executed by a Retail

(or Full) business member when either a consumer or a consumer_verified purchases some
good and pays in Euro. The operation consists in issuing a reward (in SRD) to the costumer
and paying a fee (in EUR) to the Sardex company.
An SrdB2C operation initiated (in the real world) by a Consumer_Verified member and
executed (electronically as a debit transfer) by a retailer (or full member). The operation
consists in accepting that for a purchase the Consumer_Verified member pays the retailer (or
full member) with rewards the Consumer_Verified member accumulated in SRD currency.
A RechargePrepaid operation executed by the mngr , triggered by an input received from
a Retail (or Full , or also Company due to inter-circuit trade fees) member and declared as
FeePrepayment for fees to be paid to the Sardex company in future B2C (or inter-circuit)
operations the member may perform with its customers.

All these operations concern exchange of money which we model as Send operations with
appropriate parameters.

A.4.1 Retail B2C operations (EurB2C and SrdB2C)

In the refined model there are two new operations, of type B2C (Business to Consumer), which
are in Euro and SRD currency, respectively. We do not discuss here inter-circuit trade as it is
outside the scope of this model.

It seems that these rules are considered to be part of the Sardex system software and not
of software which is executed locally on machines of the business member (in Retail or Full).
Therefore we describe the rules as triggered by receiving corresponding messages.

Chapter 2 considers the operations as instances of the general Credit/Debit operations. However,
these B2C operations do not involve the transaction and account type checks every Credit/Debit
operation has to perform. Therefore we simplify the formulation of the rules as rules tailored to
perform the necessary dedicated checks and updates, but also to avoid the other general types
checks, which are unnecessary here.

In the current Sardex system, EurB2C operations are triggered by a retail or a full member as
Debit operations from the consumer’s Bisoo account to the Income account of the retail or full

member, respectively. Since the pairing of the accounts is hard-wired, to simplify the description
of the desired functionality in this model we have chosen to describe such operations directly,
without the artificial detour via empty account type and account connectivity checks. Thus, an
EurB2C operation is triggered by a consumer (whether in Consumer or in Consumer_Verified) who
buys a product at a retail ∈ Retail ∪ Full and pays for it in Euro. The money is recorded in the
income(retail) account, a reward as SRD credit is issued to the customer and the Euro fee is paid.
The consumer from which the EuroAmount is Received remains anonymous. This means that, until
it becomes a Customer_Verified member, namely by a registration action that we do not model
here, it remains known to the Sardex system only by the number of the card issued.

INTERLACE Project (Grant no. 754494) 79

Note: A customer is either a card (‘consumer ’) or a registered B2C user (‘consumer_verified ’).
There is no need to initialise bisoocust or rewardcust . They have already been initialised upstream,
before the cards are distributed to the Retail and Full members.

EurB2C =

if Received(EurB2CMsg(EuroAmount , from : customer), from : retail) and

customer ∈ Consumer ∪ Consumer_Verified then

if ThereIsEnoughPrepaidFeeFor(EuroAmount , retail)

and ThereAreEnoughCreditsFor(EuroAmount , retail) then

ManageEuroPayment(EuroAmount , retail , customer)

ManageRewardPayment(EuroAmount , retail , customer)

ManageFeePayment(EuroAmount , retail)

else

IssueWarning(NotEnoughFundsInPrepaidOrCCAccounts)

Consume(EurB2CMsg(EuroAmount , from : customer)) // consume input
where

ThereIsEnoughPrepaidFeeFor(amount , retail) iff balanceretail (prepaidretail) ≥ euroFeeretail (amount)

ThereAreEnoughCreditsFor(amount , retail) iff availableBalance(ccretail) ≥ amount

ManageEuroPayment(amount , retail , cust) =

balance(incomeretail) := balance(incomeretail) + amount

balance(bisoocust) := balance(bisoocust)− amount50

ManageRewardPayment(amount , retail , cust) =

balance(ccretail) := balance(ccretail)− rewardRateretail (amount)

balance(cccust) := balance(cccust) + rewardRateretail (amount)

ManageFeePayment(amount , retail) =

if retail ∈ Retail ∪ Full then

balance(prepaidretail) := balance(prepaidretail)−fee(amount) // subtract fee from prepaidretail

balance(topup) := balance(topup) + fee(amount) // add fee to topup

availableBalance(ccretail) = balanceretail (ccretail) + creditLimit(ccretail)

euroFeeretail (amount) = 0.02 ∗ amount

NB. By registering, a consumer becomes a member of Consumer_Verified whereby its ‘identity’
changes from being a card to a customer , with name, surname, etc. And correspondingly its
accounts turn out to be known now as acccustomer together with the associated account access
function.

Remark on Bisoo and Income. For simplicity of exposition, we have included the bisooconsumer

action (to record, for statistical purposes, the Euro amount of the sale) into the IssueReward
rule. In the use case description in Figure 2.10 this action is introduced as a “debit-like” action
initiated by a member of Retail or Full who can access Bisoo accounts for payment purposes.
The Bisoo account does not have a “spending limit”, it is only used for statistical purposes as a
way to record what the consumer spends in Euros through B2C transactions. Although adding
the amount spent each time would achieve this purpose as well, we prefer to subtract each
time – resulting in an always-negative balance – out of a desire for consistency with the double-
entry book-keeping method at the heart of mutual credit, whereby the Bisoo and the Income

accounts are paired: what is added to the latter must be subtracted from the former. Note the
direct update of incomeretail in ManageEuroPayment, which in Chapter 2 is introduced as a Debit
operation involving incomeretail and bisoocustomer .

50 This is a purely statistical account, see below.

80 D3.1

A retail ∈ Retail ∪Full can also execute a SrdB2C operation which can be triggered by a member
of Consumer_Verified . This happens when the retailer accepts a purchase the member pays in
SRD via its accumulated rewards. It is assumed that when registering (an operation we do
not model here), a consumer is turned from an element card ∈ Consumer into an element of
Consumer_Verified , so that formally the account cccard becomes ccconsumerVerified .

SrdB2C =

if Received(SrdB2CMsg(amount , from : consumer), from : retail) and

consumer ∈ Consumer_Verified then

PayWithReward(amount , consumer , retail)

Consume(SrdB2CMsg(amount , from : consumer))

where

PayWithReward(amt , consumer , retail) =

balance(ccconsumer) := balance(ccconsumer))− amt

balance(ccretail) := balance(ccretail) + amt

PayWithReward is described in Section 2.2.8 as an instance of the standard Credit (via Service
channel) or Debit (via POS channel) operation.

A.4.2 Mngr/SysAdmin fee operations:
RechargePrepaid, AcceptFee, LowPrepaymentAlert

In the refined model there are three new SysAdmin operations.

For each retail ∈ Retail ∪ Full user, SysAdmin manages the account prepaidretail ∈ Account(retail)

(which is owned by retail but controlled by SysAdmin). This account serves a double purpose: a)
to keep track of the fee prepayments made by the retailer, in Euro currency, b) to keep track of
the fee ‘consumed’ each time the retailer performs a EurB2C transaction.

To control the fee prepayments, when a retailer pays an amount of Euros as fee prepayment into
the mngr ’s bank account, using any of the standard payment systems, that amount is added to
the retailer’s prepaidretail account. We describe this in the RechargePrepaid rule directly, avoiding
the detour via a Credit operation performed by the mngr from its auxiliary topup account. This is
further justified by the fact that the management of these accounts is not by mngr but, rather, by
SysAdmin.

For statistical purposes, the fee consumption for each B2C operation performed by a retailer
is traced by SysAdmin by making the retailer ‘pay the fee into the topup account’. To do this,
SysAdmin moves the amount of Euro which represents the fee from prepaidretail into topup. We
describe this in the ManageFeePayment rule below directly, avoiding the detour via a Debit
operation performed by SysAdmin to mngr ’s topup account.

Correspondingly, upon the receipt of a fee prepayment by the retailer through normal banking
channels, the prepaid amount is detracted from topup, consistently with double-entry book-
keeping.

In addition, before prepaidretail reaches zero, a lowBalanceAlert is sent to the retailer.

RechargePrepaid =

if Received(EuroFeePrepaymentMsg(amount , from : retail)) and retail ∈ Retail ∪ Full then

balance(topup) := balance(topup)− amount // subtract amount from topup

balance(prepaidretail) := balance(prepaidretail) + amount

INTERLACE Project (Grant no. 754494) 81

// add amount to prepaidretail

Consume((amount ,FeePrepayment), from : retail) // consume input

When a retailer has to pay the fee for a EurB2C operation it performs with a customer, SysAdmin

is triggered to ManageFeePayment when it receives the corresponding B2CEuroFeeMsg from the
retailer. Following the Euro fee handling scheme via the topup account described above, SysAdmin

must add the received fee to topup and subtract it from the retailer’s Prepaid account.

LowPrepaymentAlert =
forall retail ∈ Retail ∪ Full

if CloseToZero(balance(prepaidretail)) then

Send(PrepaymentAlertMsg(lowPrepaidBalance), to : retail)

A.5 User Operations

Users can Send requests which appear as input for the INTERLACE network server. Whether
Send(CreditPreviewReq(transfer)) or Send(DebitPreviewReq(transfer)) is invoked depends only
on the transfer parameter, which the user supplies by filling in the corresponding fields
on the screen. The same holds, mutatis mutandis, for Send(AccountHistReq(histParams)) and
Send(BalanceReq(acc)). The functionality is clear so that we do not model further this editing
process.

For Credit/Debit Perform requests, the only relevant additional constraint is that they can be sent
only after an OK message for the corresponding Preview request has been received. We use a
function kind to extract from a transfer parameter its credit or debit component, respectively.51

if Received(YouMayTriggerPerformReq(transfer), from : sardex) then

if kind(transfer) = credit then

Send(CreditPerformReq(transfer), to : sardex)

if kind(transfer) = debit then

Send(DebitPerformReq(transfer), to : sardex)

Consume(YouMayTriggerPerformReq(transfer))

In case of a Debit operation a debitor has to confirm a received debit request by Sending a
DebitAckMsg; otherwise a DebitRejectMsg is sent to the INTERLACE network server.

if Received(ConfirmationReq(otp, transfer), from : sardex) then

let (debit , channel , from, to, amount) = transfer

if Agreed(amount , owner(to), otp) then

Send(DebitAckMsg(otp, transfer), to : sardex)

else Send(DebitRejectMsg(otp, transfer), to : sardex)

Consume(ConfirmationReq(otp, transfer))

A.6 Sub-Appendix 1: Sardex Business Logic in a Nutshell

We assume that both the Credit/Debit/B2C and the mngr operations are executed by the Sardex
system with the following program SardexModel. Obviously these rules could be split and
assigned to different agents, e.g. the last two ones to the SysAdmin and the first two to an
independent agent (who by those rules reacts to triggers by the users, but the rules themselves
are not under user control).

51 In the following ASMs the keyword ‘sardex’ stands for ‘INTERLACE network server’.

82 D3.1

SardexOps =

CreditTransferReq
DebitTransferReq
EurB2C
SrdB2C
MngrOps

where

CreditTransferReq =

CreditPreviewReq
CreditPerformReq

DebitTransferReq =

DebitPreviewReq
DebitPerformReq
DebitAckReqAnswCompletion
DebitLateAckReqAnswCompletion

MngrOps =

RechargePrepaid
ManageFeePayment
LowPaymentAlert

A.6.1 The Credit operation components

Both CreditPreviewReq and CreditPerformReq rules use the CreditTypeCheck component de-
fined below.

CreditPreviewReq =

let transfer = (credit , channel , from, to, amount)

if Received(CreditPreviewReq(transfer), from : mbr) then

CreditTypeCheck(transfer ,mbr ,PermitPerformReq)
Consume(CreditPreviewReq(transfer))

where

PermitPerformReq(transfer) =

Send(YouMayTriggerPerformReq(transfer), to : owner(from))

CreditPerformReq =

let transfer = (credit , channel , from, to, amount)

if Received(CreditPerformReq(transfer), from : mbr) then

CreditTypeCheck(transfer ,mbr ,TryToCompleteCreditOpn)
Consume(CreditPerformReq(transfer))

where

TryToCompleteCreditOpn(transfer) =

CreditAccountLimitsCheck(transfer ,CompleteTransaction(transfer))

Credit check subcomponents for account types and account limits

CreditTypeCheck(transfer ,mbr ,Completion) =
if mbr = owner(from) and MayAllowTransferForCreditOpns(mbr) then

if forsome g ∈ TT Credit ,SRD(group(mbr)) owner(to) ∈ g // check transfer type then

if MayStartCreditOpns(from) // check account connectivity then

if accountType(to) ∈ AccT Credit ,SRD(accountType(from)) then

Completion(transfer)

else Send(ErrMsg(CreditTargetAccountViolation(transfer)), to : mbr)

INTERLACE Project (Grant no. 754494) 83

else Send(ErrMsg(CreditSourceAccountViolation(transfer)), to : mbr)

else Send(ErrMsg(CreditTargetGroupViolation(transfer)), to : mbr)

else Send(NotAccountOwnerOrCreditSourceGroupViolation(transfer), to : mbr)

where

transfer = (credit , channel , from, to, amount)

CreditAccountLimitsCheck(transfer ,CompletionStep) =
if CanBeSpentBy(from, amount) then

if CanBeCashedBy(to, amount) then

if HasSellCapacityFor(amount , to) then

CompletionStep
else Send(ErrMsg(CapacityViolation(transfer)), to : owner(from))

else Send(ErrMsg(UpperLimitViolation(transfer)), to : owner(from))

else Send(ErrMsg(AvailBalanceViolation(transfer)), to : owner(from))

where

transfer = (credit , channel , from, to, amount)

CanBeSpentBy(from, amount) iff availableBalance(from) ≥ amount

CanBeCashedBy(to, amount) iff to 6∈ Domu and balance(to) + amount ≤ upperLimit(to)

HasSellCapacityFor(amount , to) iff to 6∈ Domu and amount ≤ availableCapacity(to)

Credit transaction completion subcomponent

CompleteTransaction(transfer) =

let (credit , channel , from, to, amount) = transfer

Append(transaction(transfer , ttResult ,now),Ledger)

Send(Confirmed(transfer), to : owner(from))

saleVolume(to) := saleVolume(to) + amount52

where

ttResult = (group(owner(to)), accountType(from), accountType(to))

A.6.2 The Debit operation components
DebitPreviewReq =

let transfer = (debit , channel , from, to, amount)

if Received(DebitPreviewReq(transfer), from : creditor) then

DebitTypeCheck(transfer , creditor ,PermitPerformReq)
Consume(DebitPreviewReq(transfer))

where

PermitPerformReq(transfer) =

Send(YouMayTriggerPerformReq(transfer), to : owner(to))

DebitPerformReq =

let transfer = (debit , channel , from, to, amount)

if Received(DebitPerformReq(transfer), from : creditor) then

DebitTypeCheck(transfer , creditor ,TryToCompleteDebitOpn)
Consume(DebitPerformReq(transfer))

where

TryToCompleteDebitOpn(transfer) =

DebitAccountLimitsCheck(transfer ,RequestDebitAck(transfer))

Debit check subcomponents for account types and account limits

52 We treat the dynamic function saleVolume as belonging to AccountMetaData, as shown in Table 9.

84 D3.1

DebitTypeCheck(transfer , creditor ,Completion) =
let (debit , channel , from, to, amount) = transfer

let debitor = owner(from)

if creditor = owner(to) and MayAllowTransferForDebitOpns(debitor) then

if forsome g ∈ TT Debit ,SRD(group(debitor)) creditor ∈ g then // check transfer type
if MayStartDebitOpns(to) // check accont connectivity to ∈ CC then

if accountType(from) ∈ AccT Debit ,SRD(accountType(to)) then // i.e. from ∈ CC

Completion(transfer)

else Send(ErrMsg(DebitTargetAccountViolation(transfer)), to : creditor)

else Send(ErrMsg(DebitSourceAccountViolation(transfer)), to : creditor)

else Send(ErrMsg(DebitTransferTypeViolation(transfer)), to : creditor)

else Send(ErrMsg(NotAccountOwnerToReceiveDebit(transfer)), to : creditor)

DebitAccountLimitsCheck(transfer ,NextStep) =
let (debit , channel , from, to, amount) = transfer

let debitor = owner(from).creditor = owner(to)

if CanBeSpentBy(cc(debitor), amount) then

if CanBeCashedBy(cc(creditor), amount) then

if HasSellCapacityFor(amount , cc(creditor)) then

NextStep
else Send(ErrMsg(SellCapacityViolation(transfer)), to : creditor

else Send(ErrMsg(UpperLimitViolation(transfer)), to : creditor

else

Send(ErrMsg(AvailBalanceViolation(transfer)), to : debitor)

Send(ErrMsg(DebitorHasSomeProblemWith(transfer)), to : creditor)

FinalDebitAccountLimitsCheck(pendingTransact ,NextStep) =
let (otp, transfer) = pendingTransact

let (debit , channel , from, to, amount) = transfer

let debitor = owner(from), creditor = owner(to)

if CanBeSpentBy(cc(debitor), amount) then

if CanBeCashedBy(cc(creditor), amount) then

if HasSellCapacityFor(amount , cc(creditor)) then

NextStep
else RejectTransactionBecauseOf(SellCapacityViolation, pendingTransact)

else RejectTransactionBecauseOf(UpperLimitViolation, pendingTransact)

else RejectTransactionBecauseOf(AProblemAtDebitor , pendingTransact)

where

RejectTransactionBecauseOf(reason, pendingTransact) =

Send(ErrMsg(reason(transfer)), to : creditor)

status(pendingTransact) := rejected

Debit acknowledgement subcomponent

RequestDebitAck(transfer) =

let (debit , channel , from, to, amount) = transfer

let debitor = owner(from), creditor = owner(to)

if Small(amount) then // case where no acknowledgement from debitor is requested
CompleteTransaction(transfer)

else

let otp =new (OneTimePassword)

let pendingTransact = (otp, transfer)

birthTime(otp) := now // current system time

INTERLACE Project (Grant no. 754494) 85

Insert(pendingTransact ,PendingTransaction)

status(pendingTransact) := pending

Send(ConfirmationReq(pendingTransact), to : debitor)

where

Small(amount) iff amount < 100

CompleteTransaction(transfer) =

Append(transaction(transfer , ttResult ,now),Ledger)

Send(Confirmed(transfer), to : debitor)

Send(Confirmed(transfer), to : creditor)

saleVolume(creditor) := saleVolume(creditor) + amount

ttResult = (group(creditor),CC ,CC)

Debit completion components (accept/reject transaction)

DebitAckReqAnswCompletion =

if Received(AnswerMsg(pendingTransact), from : debitor) then

if pendingTransact 6∈ PendingTransaction then // otp(pendingTransact) does not exist
HandleMissingOtpError(pendingTransact)

else

let (otp, (debit , channel , from, to, amount)) = pendingTransact

let debitor = owner(from), creditor = owner(to)

if Expired(pendingTransact) then

Send(ErrMsg(ExpiredOtpFor(DebitAck , amount , creditor)), to : debitor)

Send(ErrMsg(ExpiredOtpFor(DebitAck , amount , creditor)), to : creditor)

else if IsDebitRejectMsg(AnswerMsg(pendingTransact)) then

Delete(pendingTransact ,PendingTransact)

status(pendingTransact) := rejected

Send(RejectionMsg(Debit , amount , debitor), to : creditor)

else if status(pendingTransact) = pending53 then

FinalDebitAccountLimitsCheck
(pendingTransact ,CompleteTransaction(pendingTransact))

Delete(pendingTransact ,PendingTransact) // otp ‘expires when used’
Consume(DebitAckMsg(pendingTransact))

where

Expired(pendingTransact) iff now − birthtime(pendingTransact) > lifetimeForOTPs

CompleteTransaction(pendingTransact) =

CompleteTransaction(debit , channel , from, to, amount)

status(pendingTransact) := performed

DebitLateAckReqAnswCompletion =

if t ∈ PendingTransaction and Expired(t) then

let t = (otp, transfer) // NB. otp is unique
let (debit , channel , from, to, amount) = transfer

Delete(t ,PendingTransaction)

if status(t) = pending then

status(t) := rejected

Send(RejectMsg(Debit , amount , debitor), to : creditor)

Send(OtpExpiredMsg(Debit , amount , creditor), to : debitor)

where debitor = owner(from), creditor = owner(to)

53 Otherwise, following the requirements, the message is just discarded, nothing else happens to the pending
transaction with its otp. In D2.1 the possibility to send out an error message was considered.

86 D3.1

A.6.3 The B2C operations
EurB2C =

if Received(EurB2CMsg(EuroAmount , from : customer), from : retail) and

customer ∈ Consumer ∪ Consumer_Verified then

if ThereIsEnoughPrepaidFeeFor(EuroAmount , retail)

and ThereAreEnoughCreditsFor(EuroAmount , retail) then

ManageEuroPayment(EuroAmount , retail , customer)

ManageRewardPayment(EuroAmount , retail , customer)

ManageFeePayment(EuroAmount , retail)

else

IssueWarning(NotEnoughFundsInPrepaidOrCCAccounts)

Consume(EurB2CMsg(EuroAmount , from : customer)) // consume input

SrdB2C =

if Received(SrdB2CMsg(amount , from : consumer), from : retail) and

consumer ∈ Consumer_Verified then

PayWithReward(amount , consumer , retail)

Consume(SrdB2CMsg(amount , from : consumer))

where

PayWithReward(amt , consumer , retail) =

balance(ccconsumer) := balance(ccconsumer))− amt

balance(ccretail) := balance(ccretail) + amt

The B2C operation macros

ThereIsEnoughPrepaidFeeFor(amount , retail) iff balanceretail (prepaidretail) ≥ euroFeeretail (amount)

ThereAreEnoughCreditsFor(amount , retail) iff availableBalance(ccretail) ≥ amount

ManageEuroPayment(amount , retail , cust) =

balance(incomeretail) := balance(incomeretail) + amount

balance(bisoocust) := balance(bisoocust)− amount

ManageRewardPayment(amount , retail , cust) =

balance(ccretail) := balance(ccretail)− rewardRateretail (amount)

balance(cccust) := balance(cccust) + rewardRateretail (amount)

ManageFeePayment(amount , retail) =

if retail ∈ Retail ∪ Full then

balance(prepaidretail) := balance(prepaidretail)−fee(amount) // subtract fee from prepaidretail

balance(topup) := balance(topup) + fee(amount) // add fee to topup

availableBalance(ccretail) = balanceretail (ccretail) + creditLimit(ccretail)

euroFeeretail (amount) = 0.02 ∗ amount

A.6.4 The Manager/SysAdmin Operation Components
RechargePrepaid =

if Received(EuroFeePrepaymentMsg(amount , from : retail)) and retail ∈ Retail ∪ Full then

balance(topup) := balance(topup)− amount // subtract amount from topup

balance(prepaidretail) := balance(prepaidretail) + amount

// add amount to prepaidretail

Consume((amount ,FeePrepayment), from : retail) // consume input

LowPrepaymentAlert =
forall retail ∈ Retail ∪ Full

if CloseToZero(balance(prepaidretail)) then

Send(PrepaymentAlertMsg(lowPrepaidBalance), to : retail)

INTERLACE Project (Grant no. 754494) 87

A.7 Sub-Appendix 2: IfThenElseCascade Pattern

The pattern, used for CreditPreviewReq and CreditPerformReq, is obtained by an iteration of the
following machine IfThenElse:

IfThenElse(Cond ,M ,N) =

if Cond then

M

else N

This machine is applied to conditions Condi and machines Yesi and Noi where Yesi is again an
IfThenElse:

Yesi = IfThenElse(Condi+1,Yesi+1,Noi+1)

Given a family IFE = (IFEi)1≤i≤n+1 of conditions Condi with ASMs Yesi and Noi , the pattern
machine IfThenElseCascade(IFE) can be defined recursively as follows, starting for n = 1 with
IfThenElse(Cond1,Yes1,No1):

IfThenElseCascade((IFEi)1≤i≤n+1) =

IfThenElse(Cond1, IfThenElseCascade(IFEi)2≤i≤n+1,No1)

	Introduction
	Objectives and Motivation
	Scope and Organization

	Refinement of the INTERLACE Business Logic Specification
	Context and Overview
	Permissioning Model Taxonomy
	Users and Groups
	Currencies and Channels
	Accounts
	Account Limits
	Operations
	Interaction Levels
	Visibility
	B2C Operations
	Initial Account State

	Transactability Workflow
	Identity MetaData
	Profile MetaData
	Transfer Types
	Account Connectivity
	User Transactability Functions
	Group Transactability Functions
	Transaction MetaData
	Account MetaData

	Account Limit Tests

	Introduction to the CoreASIM Language, Interpreter, and ICEF
	Virtualization Environments
	Quick-Start Vagrant
	Quick-Start Docker
	Container and Virtual Machine-Based Environments

	Execution Environment Stack
	Software Stack
	Provisioning Process
	Execution
	Development

	ICEF - The Interaction Computing Execution Framework
	Framework Stack
	CoreASIM

	Model Execution Environment Details
	Environment Configuration
	Execute the ASIM Specifications

	CoreASIM Implementation of the INTERLACE Business Logic
	Introduction
	Agents
	Execution
	Main Agent Tasks

	Modularization and Include Syntax
	Dynamic Clients
	Communication and Message passing
	Message Types
	Client Features and Functionalities
	State Management

	Logging
	Test Scenario
	Separation of Concerns
	Simulation Environment
	Additional Login Layer

	Important Rules and Locations
	Implementation Challenges
	Issues
	Current Status

	Outlook and Next Steps
	References
	Appendix: Complete Functional Requirements and Business Logic Model (2018)
	Signature Elements
	User groups: profile metadata and transfer type constraints
	Account types, account metadata and account connectivity constraints.

	Credit Operation
	CreditPreviewReq program
	 CreditPerformReq program

	Debit Operation
	DebitPreviewReq program (for SRD)
	DebitPerformReq program
	 DebitAck/RejectCompletion programs

	New B2C operations
	Retail B2C operations (EurB2C and SrdB2C)
	Mngr/SysAdmin fee operations: RechargePrepaid, AcceptFee, LowPrepaymentAlert

	User Operations
	Sub-Appendix 1: Sardex Business Logic in a Nutshell
	The Credit operation components
	The Debit operation components
	The B2C operations
	The Manager/SysAdmin Operation Components

	Sub-Appendix 2: IfThenElseCascade Pattern

