

Interacting Decentralized
Transactional and Ledger
Architecture for Mutual Credit

WP2

Iterative Architecture Requirements and Definition

Deliverable D2.3

Final Architecture

Project funded by the European Commission
Information and Communication Technologies

FET OPEN Launchpad Project
Grant no. 754494

INTERLACE Project (Grant no. 754494)

D2.3 2

Contract Number: 754494

Project Acronym: INTERLACE

Deliverable No: D2.3

Due Date: 30/10/2018

Delivery Date: 31/01/2019

Author: Paolo Dini (UH), Giuseppe Littera, Luca Carboni (SARDEX), Eduard Hirsch (SUAS)

Partners contributed: Maria Luisa Mulas (SARDEX), Thomas Heistracher (SUAS), Aurelio Riccioli (Open
Source Community)

Made available to: Public

Versioning

Version Date Name, organization

1 01/10/2018 Paolo Dini (UH)

2 18/11/2018 Paolo Dini (UH), Eduard Hirsch (SUAS), Luca Carboni (SARDEX)

3 07/01/2019 Paolo Dini (UH), Giuseppe Littera (SARDEX)

4 31/01/2019 Paolo Dini (UH)

Reviewers: Giuseppe Littera (SARDEX), Egon Börger (UNI PASSAU)

 and Aurelio Riccioli (Open Source Community)

This work is licensed under a
Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Abstract

This report describes briefly the architecture that was implemented by the INTERLACE
project, the current view of the whole Sardex application microservice architecture, and the
architecture of the overall system as it scales to many countries and jurisdictions. The report
concludes with some reflections on the role of a responsible and critical engineering approach
towards the design and development of an inclusive, open, and shared infrastructure layer as
the main legacy of the INTERLACE project.

Table of Contents

1 Introduction 4

2 Final Architecture 5
2.1 CTO-Model of the System Implemented . 5
2.2 Sardex Application Architecture . 6
2.3 INTERLACE Open Shared Architecture . 7

3 Conclusion 10

References 12

Appendix: Additional Functional Requirements and Business Logic Model (2018) 12
A.1 Requirement: Debt Record Tracking . 13

3

Chapter 1

Introduction

Paolo Dini and Giuseppe Littera

The final architecture of the INTERLACE platform can be understood to refer to three different
systems. First, it is the architecture that was implemented as reported in deliverable D3.2 [5]; second,
it is the architecture of the whole Sardex application, which includes the INTERLACE, blockchain-
based transactional platform as one of its microservices; and, third, it is the long-term open shared
architecture vision of the overall system as it scales to many countries and jurisdictions.

This report describes briefly all three, and concludes with some reflections on the role of a responsible
and critical engineering approach towards the design and development of an inclusive, open, and shared
infrastructure layer as the main legacy of the INTERLACE project.

Chapter 2

Final Architecture

Paolo Dini, Giuseppe Littera, Eduard Hirsch, Luca Carboni, and Aurelio Riccioli

The technical architecture of the system implemented is discussed in some detail in deliverable D3.2
[5]. Here we present just the high-level CTO model, which is somewhat analogous to a class diagram.
We then present the high-level view of the microservice-based Sardex application architecture; and
finally we discuss the long-term view of a global multi-layer open shared architecture within which the
Sardex system becomes one of many possible applications.

2.1 CTO-Model of the System Implemented

The CTO-model is specific to the Hyperledger Composer framework and offers the possibility to set-up
a ground model which drives the chaincode implementation. ‘CTO’ refers to the initial name of the
language used to specify the model, ‘Concerto’. Even though it was then changed to Go, the extension
‘.cto’ remained. The primitive concepts of a .cto model are:

Transactions

Assets

Participants

Concepts

Events

Enum

As can be seen in Figure 2.1, the model created for the INTERLACE project has two main transactions,
CreditTransfer and DebitTransfer, that inherit from Transfer. DebitTansfer actually also needs a
second transaction named DebitTransferAcknowledge to be performed, thus it may be counted as
a main transaction as well. Two other transactions supporting the functionality of the network are
InitBlockchain and CleanupPendingTransfer.

Transfers create and update assets. When the main transfers are executed they change Account assets:
namely, SysAccount and MemberAccount which inherit from Account. DebitTransfer also needs the
PendingTransfer asset for creating transfers that have not been confirmed yet. DeltaDebt collects all
transfers which caused a balance to go negative or that caused a negative balance to go more negative,
to log when the debt has to be paid back. Please see the Appendix 3 for more details.

In order to perform credit or debit operations a participant needs to be registered. There are two
participants derived from Member, called Subscriber and Individual. These members may own an
account asset which can be used to transfer credits from one account to another.

On several occasions events are emitted which may be consumed by an application or a user to react
to specific issues that have happened during a transaction. There are several different events that may
be of interest to a user, but for the moment only three are implemented: LimitViolation warns of a
possible account limit violation; RequestDebitAcknowledge asks a user to give an acknowledgement to
a pending transaction; and DebitAcknowledgeInvalid informs the user that the acknowledgement for
a pending transaction was denied or is invalid.

6 D2.3

MemberAccount

ParticipantsAssetsTransactions

Transfer

CCAccount

MemberAccount

SysAccount

CreditTransfer

DebitTransfer Subscriber

Individual

Relationship
Extension

Legend

Bold Abstract class

DebitTransferAcknowledge PendingTransfer

Enum

TransactionStatus
 - Pending
 - Performed
 - Rejected
 - Expired

Unit
 - SRD
 - Euro

Operation
 - credit
 - debit

GroupType
 - welcome
 - retail
 - company
 - full
 - employee
 - on_hold
 - MNGR
 - consumer
 - consumer_verified

AccountType
 - CC
 - DOMU
 - MIRROR
 - Income
 - Prepaid
 - Bisoo
 - Topup

Events

LimitAlert

Concept

RequestDebitAcknowledgeDebitAcknowledgeInvalid

AcknowledgeStatus

DeltaDebt

InitBlockchain

CleanupPendingTransfers

Fig. 2.1: Hyperledger .cto model/class diagram of INTERLACE transactional platform

Finally, there are a few enum types with states names for operations and units as well as account
and group types. A detailed explanation of the model language can be found the official hyperledger
composer documentation1

2.2 Sardex Application Architecture

Figure 2.2 provides a snapshot of the high-level application architecture of the Sardex system. The
detailed Legend of the figure should make it possible to discern what the different components are
and do. The heart of the system is the Permissioned Hyperledger Transaction Platform: this is the
component that was implemented by INTERLACE at the level of a proof-of-concept prototype.

In this view, the different circuits operating in the different Italian regions are connected to the same
network, and in fact to the same Hyperledger Channel. Thus, in this initial prototype the architecture
is centralised, with the only possible outsourcing the Identity service that Auth0 or similar could
perform.

Other infrastructural services, with red border, are shown as microservices: Search, Adverts, etc. The
system also needs several kinds of user interfaces, shown with a blue border. The blockchain itself
requires a GUI for the SysAdmin and one of the users, who may wish to inspect past transactions.
Then, different kinds of users will need their own specialised GUIs: B2B end-user, B2C/B2E end-user,
Broker, Partner (i.e. manager of a different circuit), general public, and SysAdmin. We have not shown
a Regulator interface but that is likely to be implemented too.

Finally, the figure also shows possible future extensions of the system towards other types of blockchain.
The two most notable and likely, at this point, are Ethereum, Stellar, and Holochain. Ethereum and

1 https://hyperledger.github.io/composer/latest/reference/cto_language.html

https://hyperledger.github.io/composer/latest/reference/cto_language.html

INTERLACE Project (Grant no. 754494) 7

Stellar could be used to extend the payment service towards inter-circuit trades. Stellar, in particular,
is specialised for currency exchange. However, Ethereum may be easier to adopt since Hyperledger is
developing an Ethereum interface.

N = Network
Org = Organisation
NP = Network Policy
O = Orderer
Ch = Channel
CP = Channel Policy
P = Peer
PE = Endorser Peer
S = Smart contract

(chaincode)
C = Client
MSP = Membership

Service Provider
CA = Certificate

Authority
L = Ledger
A = App
D = Identity
X = Consortium
U = User

Org: Sardex

N

CA

PE: SardexL

S

U1
U2…

Un

O: Sardex NP

D: Sardex

Ch

CP

Sardex.MSP

A: User Front-End

Blockchain Explorer
(Users)

Permissioned Hyperledger Transactional Platform
Search

User
Profile

Adverts

AlertsMessage
Service

Credentials

Geo-
Localisation

Sub-User

SysAdmin GUI

Blockchain Explorer
(Admin)

A: Partner Front-End A: Broker Front-End A: Public Front-End

P1
P2

Pm

B1
B2

Bi

Anonymous access
to network stats and
public trading metrics… …

Auth0

SRD LBX* VTX* …

Al
te

rn
at

ive
 p

er
m

iss
io

nl
es

s
pl

at
fo

rm
:

S
te

lla
r

or
 E

th
er

eu
m

Possible future
(redundant) extension:
Holochain

Key

Infrastructural (micro)service
Future possibility
Front-end component
ID, access, & certification

Legend

Fig. 2.2: High-level Hyperledger-based microservice architecture with possible extensions

Holochain, on the other hand, could be an interesting extension towards distribution of the blockchain
to the end-users, i.e. making the end-user terminals (phones) nodes in the blockchain network. This
could be interesting for censorship-resistance scenarios, but also for situations where the economy is
more informal. For example, in poor neighbourhoods or in contexts where there are migrants, or aid
being delivered to migrants. This aspect is farther in the future not only because of the difficulty the
realisation of such a financial model would entail but also because the Holochain framework is farther
behind in development relative to many others.

2.3 INTERLACE Open Shared Architecture

The final view of the architecture is based on the Corda-Network example,2 which we find deeply
interesting and innovative. Its most important aspect, which we plan to emulate, is to separate the
Figure 2.2 view into the three layers shown in Figure 2.3 (the orchestration layer is more technically
than conceptually relevant so we do not focus on it). This is done not only from the unsurprising
functional stack point of view but, more importantly, in terms of the controlling legal entities.

More specifically, the bottom Infrastructure Layer becomes a semi-public, shared, and neutral
infrastructure as a permissioned blockchain that is a direct extension of the INTERLACE blockchain.
Its legal personality could be a foundation, as Corda have done, or similar non-profit entity. However,
it will need to be economically self-sustaining; therefore, it will charge for Identity and Notarisation
services. The result of this separation is that the bottom, persistence blockchain layer is relatively

2 https://corda.network/

https://corda.network/

8 D2.3

lightweight – and therefore of relatively modest operational management requirements. Most the
complexity will be housed in the middle layer.

Neutral INTERLACE Shared Meta-Network
 • Public permissioned networks built on
 Hyperledger Fabric
 • Shared basic services
 • Global

Features
Activities and
revenue streams

• Single UX UI
• Customisable
• Embeddable

• Onboarding
• Brokering
• Education
• Networking

Community Layer

Application Layer

Infrastructure Layer

Circuits Front-End
 • Main web and mobile app implementation
 • App can be customised
 • Login embedded (third domain-linked)
 • Geographically local circuits

(Sardex) Application Backend
 • Private permissioned community
 • Currency application
 • Geography-agnostic

• For-profit + social impact
• Value-added services
• Extendable platform

• Subscriptions
• Fees
• Policies
• Third-party plug-ins

• ID Services
• Interoperability
• Notarisation support
• Application-specific
 networks

• Neutral
• Interoperable
• Self-funded and
 governed

Time
Bank

Fiat
PSP

Crowd-
funding

Etc…

Functional Layers

(E.g. Fuse Apache Camel)
Orchestration Layer

Fig. 2.3: Long-term view of the Sardex open shared architecture stack

The Infrastructure Layer will remain open source. Access will only be given to legal entities, not to
natural persons. Finally, this layer will be accessible also to regulators and tax authorities, and will
comply with the relevant directives. From the point of view of governance, the Infrastructure Layer
will be composed by different kinds of nodes, the first of which will be an Orderer, Identity Certificate
Authority, and Notarlsation. But as new nodes join they will take these functions, on rotation, or
other functions like Endorser Peer and so forth. These nodes could be run by participating company
according to an agreed-upon policy, or by the founding members of the foundation, for example the
original members of the INTERLACE project.

The middle, Application Layer is where the proprietary business logic of applications like Sardex will
be housed, i.e. all the microservices shown in Figure 2.2. In the case of the Identity service, it will be
split up in order to put the most basic certification aspect in the Infrastructure Layer while the GDPR-
relevant user profile data plus other application-specific information will be held in the Application
Layer. This layer will also host other applications, shown in the figure as Crowdfunding, normal fiat
money Payment Service Providers, and so forth. The implication is that the neutral infrastructure
layer will not be limited to credits: because it will not perform deep packet inspection it will mediate
whatever the overlying applications will want to transfer. At this layer the architecture can be regarded
as centralised since Sardex is the single owner running its proprietary application, even if it might
become global.

The third layer is the community layer. This is where localism and the social and cultural dimensions
will be represented and protected. This is where both legal entities (mostly but not exclusively SMEs)
and natural persons/citizens/consumers will be able to form communities and interact commercially
with each other, following the current Sardex model and approach. Each circuit will be run by a
‘Partner’, i.e. a for-profit or non-profit company that wishes to set up a Sardex-like circuit in their
region.

INTERLACE Project (Grant no. 754494) 9

The next aspect of the architecture to be considered is the interfaces. The interface between the
Community and the Application layers will be controlled by the latter through a number of possible
GUIs and an appropriate API to support different kinds of Admin access. The managers of the circuits
will have a GUI into some of the services of the application, whereas SMEs and natural persons will
need to go through their community’s GUI/skin. Access will be clocked and charged according to the
principles of mutual credit we are currently developing for scalability and that are briefly outlined in
deliverable D4.2 [6]. For example, the middle-layer application may be partly owned by the circuits
which, in turn, may be partly owned by their own users.

The interface between the Application and Infrastructure layers is where the ‘permissioned’ nature of
the blockchain is most evident. Depending on the type of company requesting access, different kinds
and level of access can be granted. For example, regulators will have a different kind of access from
an SME.

Chapter 3

Conclusion

Paolo Dini

The question of regulating access is linked to a fundamental aspect of this architecture that has not
been mentioned yet. Specifically, it opens the possibility to embed the principles of mutual credit in the
infrastructure and the protocols themselves. We make this point in the Conclusion because it highlights
the culmination of a journey of increasing self-awareness, self-determination, and appropriation of the
technological means that support the financial infrastructure of the Sardex circuit.

The Sardex founders were aware from the beginning that their objective was a radical financial
innovation in the service of the local real economy. This can therefore be regarded as a “political”
project, not in the sense of party politics but in the wider sense of ‘The Political’ as defined for
example in the Heteropolitics project:3 The Political is the deliberate, i.e. conscious, choice to form
or influence social relations. The Sardex founders were interested in improving social and economic
relations in their territory, but were keenly aware that an explicitly party-political movement would
not have been appealing to the great majority of Sardinian SMEs. Thus, they decided to act at the
level of a different financial model.

Insofar as a financial model enables and influences economic behaviour and interactions and is encoded
in a technology platform, it can be regarded as a form of infrastructure. Because the initial and still-
functioning Sardex transactional platform (which INTERLACE aims to replace) is based on a fairly
traditional relational database, the original Sardex innovation was ultimately an innovation in financial
architecture rather than technological architecture. The system architecture that we have presented
and discussed in a series of deliverables (D2.1 [1], D2.2 [2], D3.1 [4], D3.2 [5], D4.2 [6]) is nothing more
than the consequence of this overarching requirement, coupled with the requirement that the system
be scalable and sustainable in the long term.

To contextualise the architectural choices around access and mutual credit-specific protocols, it is
helpful to view the actions of the Sardex founders and the overarching objectives of the INTERLACE
project through the lens of Andrew Feenberg’s Critical Theory of Technology (CTT) [3]. Feenberg
starts with the assumption that, whether we like it or not, technology embodies our cultural values.
As shown in Figure 3.1, Feenberg maps the philosophy of technology field with two axes: in one
direction, technology is regarded as either value-neutral or value-laden; in the other direction, it
is regarded as either human-controlled or autonomous. The top-left quadrant views technology as
autonomous and value-neutral, like Marx’s Determinism. The top-right quadrant is populated by
people who are optimistic about technology and believe it is neutral. The bottom-left quadrant is
populated by Luddites, who fear technology because they regard it as both laden with destructive
values and autonomous. INTERLACE belongs firmly in the lower-right quadrant, where our awareness
that technology is value-laden together with the belief in our ability to control it leads to a responsible
engineering design ethos that can in some sense “domesticate” technology by making the technologists
accountable to the users of their creations. The importance of bodies like the Internet Governance
Forum4 is ultimately founded on this assumption of responsibility of technology towards society. The
foundation or similar body that will eventually control the Infrastructure Layer of the INTERLACE
open shared architecture will be organised along similar principles, but with a narrower focus on
enabling SMEs through local circuits.

3 https://heteropolitics.net
4 https://www.intgovforum.org/multilingual/content/igf-2018-0

https://heteropolitics.net
https://www.intgovforum.org/multilingual/content/igf-2018-0

INTERLACE Project (Grant no. 754494) 11

Technology is: Autonomous Humanly controlled

Neutral

Value-laden

Determinism
(Marx)

Instrumentalism
(optimistic)

Substantivism
(pessimistic)

Critical Theory
(Feenberg)

Fig. 3.1: The philosophy of technology field according to Feenberg [3]

From this point of view, therefore, the long-term view of the Sardex system is that it will rely on an
infrastructure that will enable and support certain kinds of business behaviour while discouraging or
making impossible other kinds. Thus, from the CTT viewpoint the Infrastructure Layer is not neutral
at all, and consciously so. In the previous chapter this layer is characterised as neutral from the point of
view of private ownership and competition: it is neutral and open to any legal entities that wish to use
it, but the services it will provide are constrained by the non-neutral values that it will embed, namely
to support and encourage the real economy and to discourage or block out the financial economy (as
it is constituted today).

The clearest examples of how this can be achieved at the level of requirements is to encode the zero-
interest and non-convertibility principles into the blockchain protocols/smart contracts that act in this
bottom layer. It is not yet clear whether specific access restrictions (to e.g. securities traders) should
also be enforced, but it may be sufficient (and would be more elegant) simply to disable certain types
of financial operations. For example, any mutual credit application that wants to use the blockchain
Infrastructure Layer will need to comply with both requirements, but a fiat PSP may need to be able
to convert between different currencies. However, even a PSP will not be able to use the blockchain to
store fiat money or other crypto-currencies, because this blockchain will not be cryptocurrency-based
and will not (cannot) be a bank. It can store credits precisely because credits are not regarded, by the
banking regulators, to be on the same footing as fiat and, therefore, they are PSD II-exempt.5

Similarly, multiple mutual credit system will be able to use the bottom layer, not just Sardex S.p.A.,
but convertibility between different credit units will not be allowed; this is to prevent the migration
of currency exchange speculative practices to the exchange between different credit units. However, if
anyone mutual credit application happens to straddle different currency areas, as Sardex is planning
to do, then of course an exchange mechanism will be needed given that each credit unit will be pegged
1-1 to its local fiat currency. Another example of a political principle embedded in the protocol, in this
case, is the fact that there will be only one exchange rate in both directions between any two currency
areas. Finally, these currency exchange rates are an example of the kind of information that will be
publicly accessible to anyone, not just the legal entities that have registered to use the permissioned
blockchain.

In the long term, we hope that this architecture will enable the scaling of the Sardex mutual credit
system to support SME trade worldwide in a way that is transparent and accountable, even if private
as concerns business-confidential information and GDPR-regulated personal information; that will be
compliant with all banking and PSP regulations; and that will encourage an ecosystem of similarly-
minded legal entities in a constructive balance between cooperation and competition in the real
economy.

5 https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en

https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en

References

References

1. P Dini, E Börger, E Hirsch, T Heistracher, M Cireddu, L Carboni, and G Littera. D2.1: Requirements and Architecture
Definition. INTERLACE Deliverable, European Commission, 2017. URL: https://www.interlaceproject.eu/.

2. P Dini, G Littera, L Carboni, and E Hirsch. D2.2: Iterative Architecture Refinement. INTERLACE Deliverable,
European Commission, 2018. URL: https://www.interlaceproject.eu/.

3. A Feenberg. Questioning Technology. London and New York: Routledge, 1999.
4. E Hirsch, T Heistracher, P Dini, E Börger, L Carboni, M L Mulas, and G Littera. D3.1: First Demonstrator

Implementation. INTERLACE Deliverable, European Commission, 2018. URL: https://www.interlaceproject.
eu/.

5. E Hirsch, T Heistracher, P Dini, E Börger, L Carboni, M L Mulas, and G Littera. D3.2: Final Demonstrator
Implementation. INTERLACE Deliverable, European Commission, 2018. URL: https://www.interlaceproject.
eu/.

6. G Littera, G Dini, and P Dini. D4.2: Report on Field Tests and Commercialization Plan. INTERLACE Deliverable,
European Commission, 2019. URL: https://www.interlaceproject.eu/.

https://www.interlaceproject.eu/
https://www.interlaceproject.eu/
https://www.interlaceproject.eu/
https://www.interlaceproject.eu/
https://www.interlaceproject.eu/
https://www.interlaceproject.eu/
https://www.interlaceproject.eu/

Appendix: Additional Functional Requirements
and Business Logic Model (2018)

Eduard Hirsch and Paolo Dini

In order to see how to manage a more challenging use case based on reading historic data placed on the chain, we model
the “delta-debt” function as an additional requirement. This example could help foresee possible challenges for more
complex tasks. The implementation details for the other requirements covered can be found in D3.2 [5].

A.1 Requirement: Debt Record Tracking

Sardex sets the credit line of the circuit’s SME users based on their turnover as well as on their track record. Thus, the
balance of an account, as described in the requirements specification deliverables D2.1 and D3.1 [1, 4], can go negative
(with a 0% interest rate) up to a maximum amount that varies for each member company. It is a Sardex contractual
requirement that such a negative amount or debt be “paid back” within 12 months of when it was incurred. The debt is
not towards Sardex S.p.A. (Sardex S.p.A. is not a bank) and it is not bilateral towards a single other member. Rather,
the debt is towards the circuit as a whole. Therefore, the indebted company can pay back or recover its debt simply by
selling its products and services to any other members, at least for the amount of the debt and within 12 months of
incurring it. In general, each and every transaction that increases the debt of an already negative balance needs to be
recovered within a separate 12-month window.

More precisely, any transaction that increases the debt of an account triggers a recording of that newly created portion
of debt and causes the system to allocate a separately handled due date 12 months later for its repayment. On the other
hand, if an account receives a positive amount of credits (due to the sale of a product or service), then the “debt-portions”
which that account may have accrued up to then are paid back in sequence, starting from the oldest unpaid one.

t0

balance

t2t1t0t-1 t-2

delta

delta

t0

t1

Fig. A.1: The delta-debt progression

Figure A.1 illustrates a transaction flow for a single account with 5 transactions and their timestamps named ti , where
i covers the interval [−2, 2] in discrete steps of 1. Two timestamps tj and tk with j > k imply that tj is older than tk .
Let’s assume a transaction at t0, as illustrated in the figure, which turns a positive balance into a negative value. That
event then defines a starting timestamp at t0.

This transaction at t0 creates a debt whose value is recorded in the variable balance after the transaction. In other words,
the value of balance before the transaction is reduced by the transaction amount , and it becomes a debt because, before
the transaction, balance ≥ 0 and amount > balance. The debts debtt0 and debtt1 created by this transaction and by a
possible further transaction, respectively, are represented in Figure A.1. Furthermore, these debts are treated as positive
values. Thus, we define a debt created at ti as

14 D2.3

debtti =


|balanceti − amountti | if i = 0 and balancet0 ≥ 0 and amount > balance
amountti if i > 0 and balanceti < 0
0 else

By declaring txidti as the id for a transaction which is executed at time ti and with accid as the account id, we are
defining a so-called deltaDebt with index i as the following tuple:

deltaDebti = (ti , txidti , debtPosti , accid), (1)

The amountti is not needed any more once the new debtPosti has been computed, namely as debtPosti reduced by any
amount received by the same account.

The creation of a deltaDebt can be described as follows. Note that it will be called only when some debit is created or
an existing credit increased.

CreateDeltaDebt(txid , currentDate, from, amount) =
let balance = balanceOf(from)

if (balance − amount) < 0 then
let debt ={
|balance − amount | if balance > 0
amount else

let deltaDebt = (currentDate, txid , debt , from)
WriteDeltaDebt(deltaDebt)

In order to pay back an open debt, at every transfer the deltaDebts (if there are any) need to be checked for possible
clearances:

ClearDeltaDebt(txid , to, amount) =
if amount 6= 0 then // no debt change when amount = 0

let openDeltas = SelectOpenDeltaDebtsFor(to)
ClearDebt(openDeltas, amount)

where
ClearDebt(openDeltas, amount) =

if openDeltas 6= ∅ then
let oldestOpenDebt = SelectOldestDebt(openDeltas) // NB. oldestOpenDebt 6= undef
if debtPos(oldestOpenDebt) ≥ amount then

debtPos(oldestOpenDebt) := debtPos(oldestOpenDebt)− amount
else

let restAmount = amount − debtPos(oldestOpenDebt)
debtPos(oldestOpenDebt) := 0
ClearDebt({d ∈ openDeltas | d 6= oldestOpenDebt}, restAmount)

In this ASM example we assume that SelectOpenDeltaDebtsFor is returning a set of open deltaDebt entries from
the persistence layer where debtPos of each deltaDebt is bigger than 0. SelectOldestDebt selects the deltaDebt of a
corresponding set with the minimum timestamp. Further, SelectOldestDebt is only defined if openDeltas is not an
empty set.

debtPos(oldestOpenDebt) reads or writes the pending amount for a particular deltaDebt (here: oldestOpenDebt).

	Introduction
	Final Architecture
	CTO-Model of the System Implemented
	Sardex Application Architecture
	INTERLACE Open Shared Architecture

	Conclusion
	References
	Appendix: Additional Functional Requirements and Business Logic Model (2018)
	Requirement: Debt Record Tracking

