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Abstract

This report presents a summary of the analysis of a wide range of blockchain frameworks and
technologies, comparing six of them in some detail. The mathematical framework underpinning
the Stellar Consensus Protocol is retraced in detail in the Appendix. The conclusion of the
analysis is that the most suitable framework for the INTERLACE transactional platform
is Hyperledger Fabric. The iterative refinement of the functional specification presented in
deliverable D2.1 is actually presented in deliverable D3.1.
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Chapter 1

Introduction

Paolo Dini and Giuseppe Littera

The main purpose of this report was originally to provide a refinement to the specification of the
transactional platform as given by deliverable D2.1 [6]. That refinement work ended up being integrated
in D3.1 [10], because the more urgent challenge of the architecture workpackage became to select an
appropriate blockchain technology or framework for the platform. Although this process is being
reported now, after the end of the project, the choice was made relatively early on, or in any case
early enough for the project to be able to achieve a proof-of-concept implementation. The selection of
a blockchain technology for the INTERLACE platform was a long and difficult process because of the
wide variety of technologies, architectures, and protocols available; the very rapid rate of innovation
in this field; and the evolving requirements of a future vision for the Sardex platform.

Clearly, although INTERLACE is only a first attempt at a blockchain-based transactional platform
for the Sardex circuit, it should be as compatible as possible with the future vision of the circuit.
In other words, the blockchain framework needs not only to meet certain quality expectations of the
technology itself and to satisfy certain business requirements (as described in detail in D3.1), but
must also be compatible with the long-term governance and company structure needs of the Sardex
initiative as it scales beyond Italy and Europe. In particular, it took a long time to understand how
the Sardex mutual credit system could scale to global level while remaining faithful to its principles
of support for local economies and of reliance on trust between its users. It is important to realise
that the support for local economies and the reliance on trust are not ideological choices. Rather,
they should be regarded as a mixture of ethical choice and the feature of the network upon which its
success is based: that is, the core of the value-generation process, which must therefore be protected.

The fundamental challenge is that trust is most easily built within small social groups and is difficult
to maintain in large, long-range systems. Therefore, a global monolithic architecture and company
structure could never work because it would lose its value-generating core(s). The answer can only
be an architecture that is either distributed or at least hierarchical, with significant delegation and
distribution of control to local circuits in local socio-cultural and economic contexts. Since the social
and the business dimensions are the starting point for the requirements that lead to choice of technology
and architecture definition, we adopted a circular and iterative approach that compared what was
possible with what was desirable at each step, and slowly evolved the vision as our understanding of
the blockchain space and of our own requirements improved. In this short report we cannot go into
too much depth, but it is worth addressing what is arguably the central concept for both Sardex and
the blockchain: trust.

1.1 Sardex, Trust and the Blockchain

The blockchain is often described as a ‘trustless’ technology, since the distribution of the validation and
record-keeping function to many independent nodes, together with cryptographic algorithms, removes
the need for a central authority that plays the role of record keeper and transaction orderer. According
to the prevailing view in Computer Science, therefore, trust in a central authority and bilateral trust
between transacting parties are substituted for reliance on a type of technology and protocol. Clearly,
such an approach is particularly useful in situations where there is no trust at all between transacting
parties.
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By contrast, the Sardex circuit relies on trust at a fundamental level. Between the “sociological” trust
discussed by Sartori and Dini [12] and the trust in the technology platform lies an “economic” type
of trust. In particular, Sardex relies on, and reinforces, “thick trust”.! Thick trust has been discussed
in the literature in the business context (e.g. [15]), but for our purposes it is sufficient to define it
as the combination of “Know Your Customer” with “Know Their Products”. The role of the Sardex
company that runs the circuit, combined with the work of the Sardex brokers, greatly reduces the
social cost of trust for the SMEs who participate in the network and achieves and combines both these
components, because it is able to make trust transitive: the circuit members trust the Sardex company
and the electronic platform, and in the majority of cases this trust extends to bilateral trust between
the transacting parties, making the Sardex circuit a particularly strong and stable trading community.
One of the drawbacks of such an approach is that the communities and companies involved in the
network ultimately depend on one actor to facilitate credit and trade among participants, rendering
the network as a whole highly efficient yet vulnerable and not as inclusive and socially/financially
adoptable as might be preferred.

Thus, Sardex interested in the blockchain for two reasons. First, as the company operations grow
beyond Sardinia and Italy to other countries in Europe and beyond they will involve interactions with
other circuits whose legal personality, business relationship with Sardex, and proprietary structure
may vary along a range of options depending on the context and stakeholders. Therefore, from a
functional and organisational point of view it may be more expedient to build in some flexibility at
the level of the architecture: for example, each circuit could run a separate node of the blockchain.
This could enable inter-circuit trade via agreements recorded on decentralised public ledgers, more
transparency of the overall network, and regional and local clusters of SMEs — which in turn reduces
informational asymmetries.

Second, this organisational flexibility requirement, which is essentially functionalist, is reinforced by
the social and cultural requirement of respecting local community identity to the extent possible.
This is not so much a matter of institutional or governance efficiency as a question of shared values
built around reciprocal respect between different communities who identify with different regions
or localities. We feel it is easier to meet such expectations with an articulated and decentralised?
architecture than through a monolithic platform like Facebook or Google.

1.2 Overview of Report

This brief report provides a high-level discussion of the main blockchain technologies we examined
during the course of the project, together with a rationale for choosing Hyperledger Fabric as the
core component with possible extensions towards Ethereum and Holochain. The discussion in the rest
of the report assumes familiarity with the basic concepts and terminology of the main blockchain
technologies as can be found, for example, in [14].

Chapter 2 discusses a few candidate Distributed Ledger Technologies (DLT's) that we assessed in the
process of deciding which satisfied the INTERLACE and Sardex requirements best. The next step
in the process was going to be an ASIM specification and CoreASIM modelling of the transactional
platform, which would have been reported in a third chapter, but lack of funding complementary to
the INTERLACE budget made this plan impossible. We therefore decided that it made more sense
to focus the remaining time and resources on implementing a proof-of-concept transactional platform
based on the requirements specified in deliverable D2.1 [6] and updated in deliverable D3.1 [10]. The
implementation work is reported in deliverable D3.2.

! Richard Simmons, economist, private communication, 2018.

2 In contrast to what we wrote in the INTERLACE proposal, we have adopted the definition of ‘decentralised’ as an
architecture where control is distributed, as opposed to ‘distributed’, which we take to mean only a distribution of
functional aspects but leaves the control central.
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Table 1 shows the definition of the acronyms used in this report.

AML

Anti Money Laundering

ASM

Abstract State Machine

ASIM

Abstract State Interaction Machine

B2B

Business-to-Business

B2C

Business-to-Consumer

BFT

Byzantine Fault Tolerance

BTC

Currency symbol for Bitcoin

Dapp

Distributed App

DB

Database

DHT

Distributed Hash Table

DLT

Distributed (or Decentralised) Ledger Technology

DoS

Denial of Service

ETH

Currency symbol for Ether, the Ethereum token

EVM

Ethereum Virtual Machine

FDAS

Federated Distributed Agreement System

FPML

Financial Products Markup Language

GDPR

General Data Protection Regulation

ICO

Initial Coin Offering

JS

Javascript

JVM

Java Virtual Machine

KYC

Know Your Customer

LE

Leader Election

PBFT

Plenum Byzantine Fault Tolerance

PoA

Proof of Authority

PoS

Proof of Stake

PoW

Proof of Work

Qr

Quorum Intersection

REST

Representational State Transfer

SC

Smart Contract

SCP

Stellar Consensus Protocol

SMR

State Machine Replication

SQL

Structured Query Language

SRD

Currency symbol for Sardex credits

Tx/s

Transactions per second

UML

Unified Modelling Language

UTXO

Unspent Transaction Output

XLM

Currency symbol for Lumen, the Stellar token

Table 1: Table of acronyms used in the report
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Chapter 2

Analysis of Possible Blockchain Technologies for INTERLACE

Paolo Dini and Giuseppe Littera

2.1 Introduction

As stated in the INTERLACE proposal, we are not interested in relying on Bitcoin, due its very
low performance efficiency (< 10 transactions per second, or [Tz/s]) and the wastefully high energy
requirements of the Proof of Work (PoW) consensus protocol. Bitcoin, however, remains a useful
reference point for many blockchain properties and parameters. It is therefore assumed that the reader
is already familiar with the basic concepts of the Bitcoin blockchain, which are explained very well in

2].

In the next section we present a few important concepts around which design trade-offs, and in our
case selection trade-offs, have been made to arrive at the architecture that at the time of this writing
we feel is most suitable for INTERLACE and for the Sardex circuit, Hyperledger Fabric. A few
more specific details are then presented that concern a small subset of possible Distributed Ledger
Technologies (DLTs) in common use, which are summarised at the end of the chapter in a summary
table. Thus, the analysis in this chapter forms the basis for the architectural design decisions described
in deliverable D2.3 [7].

2.2 Basic Concepts
2.2.1 The Blockchain as a Distributed Applications Platform

It may appear that the most important innovations of Bitcoin are the creation “out of thin air” of
a new currency and the substitution of a central authority for validating a ledger of transactions
in this new independent currency with a distributed architecture based on a consensus protocol.
These two innovations were the main motivation for creating Bitcoin, but as has been noted by
many the potentially more impactful innovation is the blockchain itself. Figure 2.1 proposes a reason
why by highlighting the role of the second-generation blockchains such as Ethereum as a distributed,
permanent, and immutable memory in enabling a new type of distributed — yet very expensive and slow
— application. The fact that this memory substrate is shared among completely unrelated applications
and user groups is interesting from the point of view of the sharing economy, which could be regarded
as a third innovation, but the (fourth) innovation that opens up a new space for computer science and
software engineering is the fact that the memory is distributed, permanent, and immutable.

As shown in Figure 2.1, even allowing for block and wallet explorers,? the Bitcoin blockchain supports
only the simplest kinds of interactions between users and the permanent, distributed, and immutable
memory. Second-generation blockchains, on the other hand, have introduced what looks like a familiar
stack: user interface, code, persistence layer. However, the persistence layer is writable only once. A
single permanent and immutable shared history will remain “on the shared record” forever — or at least
as long as there will be at least one running server hosting the blockchain. In smart contract-enabled
distributed ledgers it is possible to perform also shared calculations and self-enforcing agreements
based on user and/or machine or data input. Clearly, these two elements combined create a very
special type of application framework that has never been possible before. If, as Edward De Bono said
long ago, memory is the basic mechanism of intelligence [5], this kind of persistence layer could be the

3 For example: http://www.bitcoin-en.com/uploads/1/0/8/6/10861361/2620769. jpg?623
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start of a collective intelligence with properties and capabilities that are impossible to predict today.
For the moment, therefore, we focus on the most obvious use case, a financial information system — i.e.,
in the INTERLACE case, the blockchain as the “mind” and memory of an additional real-economy
network layer meant to complement the existing real economy. In particular, we wish to define the
most appropriate properties of the financial information system and transaction engine for the Sardex
circuit.

'ﬂ% %@ @ f i Bitcoin: users interact with
@ © cuss

permanent, immutable,
distributed ledger directly

not-yet
—1_| | [=L[=L[=L[=|_ ~ validated
Eéi‘%’ézézézézézél | block
time
\“ ﬁ
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(¢ ) GU C— ———— distributed memory

Smart contracts

as distributed Dapp2 Dapp3
application
7 K A not-yet
= =l ==l = = =S =L = U= =L =L =] T validated
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Fig.2.1: Second-generation blockchains enable a peculiar type of distributed application

As explained in the Corda technical white paper ([9]: 30), the need for organising the transactions into
blocks is a consequence of the fact that the rate at which transactions are performed is greater than
the rate at which they can be validated by all the peers of a large distributed system with network
latencies. The block structure permits the validation of a set of transactions at a time. Since Corda is
a permissioned distributed database, it does not need to achieve global consensus and therefore does
not need to employ blocks.

2.2.2 Deterministic Execution

As discussed in the Hyperledger technical white paper [1], distributed systems have relied on the state
machine replication (SMR) paradigm [13] for a few decades. The SMR approach is motivated by the
need for redundancy in the provision of services to a given client as a strategy to offset possible faults.
Each service request from a client is executed in an identical, deterministic, and asynchronous way
by a set of servers, which means that the same operations are executed in the same order by each
server, even though not necessarily at the same time. By definition, the correct response is whatever
the majority of the servers calculates. Therefore, SMR is resistant also to Byzantine faults, which are
malicious and not merely technical. More precisely, an SMR system is t-resistant as long as no more
than ¢ servers are affected by faults (Byzantine or otherwise) for a total set comprising 2t + 1 servers.
Most blockchains have taken SMR as a starting point, where the set of operations in this case is one
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block of transactions. In particular, most global consensus algorithms are centred around reaching
agreement on the ordering of the transactions in a given block — hence the name ‘order-execute’ for
this type of distributed architecture.

For example, in Bitcoin order-execute involves deterministic sequential execution by each peer, after
the first peer has ordered a block, solved the PoW puzzle, and broadcast the block by gossip. The
validation of the new block is achieved once every peer has completed and validated the execution. In a
public blockchain such as Ethereum a denial-of-service (DoS) attack could be mounted by embedding
an infinite loop in the smart contract of one of the transactions. Since it is not possible to determine in
general whether or not an algorithm completes (‘halting problem’), such a loop could go undetected,
leading to a block that cannot be validated and stopping the ability of the blockchain to support future
transactions. Ethereum solves this problem by using “gas” which, once converted in the cryptocurrency
of that blockchain (ether), results in a charge for the execution of transactions. Gas is essentially a
mix between an anti-spam/sybil attack and pay-as-you-write mechanism.

The low efficiency of sequential execution can be improved upon with parallel execution of unrelated
transactions. However, detecting the possible interdependencies is not trivial. Stellar and Holochain
seem to have been able to do that.

Holochain solves the problem by giving up on global consensus for mutual consensual validation which
can be optionally gossiped to a global DHT. This is an agent-centric approach where memory and
computation are not shared by default. Stellar uses XLLM as Ethereum uses gas, yet manages consensus
without PoW but via SCP and a set of known validators. This is a data-centric approach where all
transactions need to be on the same single replicated ledger maintained by each node participating in
the consensus quorum.

2.2.3 Non-Deterministic Execution

Non-deterministic execution of smart contracts can lead to forks in the blockchain and is therefore
avoided when possible. This can be achieved by means of smart contract languages that are not Turing-
complete: they should be expressive enough for the purposes of the blockchain they serve (like Solidity
for Ethereum) but not so general as to render complete avoidance of non-determinism impossible. For
example, Androulaki et al. [1] mention a map iterator in Go that is a deterministic operation at the
level of the command but hides a non-deterministic implementation in the Go language itself.

2.2.4 Confidentiality

Performing chaincode on all peers may expose details that some peer would rather be kept private.
This issue is particularly important in B2B contexts. One possible solution is to replicate the end-state
of the calculation (passive replication) rather than the whole calculation (active replication) [1].

Recent developments in both Hyperledger Fabric, Burrow, and on Ethereum itself indicate that
possible future solutions may enable confidentiality at more granular levels via so-called Zero-
Knowledge Proofs.*

2.2.5 Native Currency

The Bitcoin blockchain provides the simplest example of what a native currency is and how it is
created. This is done by a miner by writing a transaction to self of (currently) 12.5 BTC at the
beginning of the block he/she will then try to validate by finding the nonce that satisfies the puzzle
requirement (i.e. the hash of the miner’s current block with the winning nonce) for the current block.

* See e.g. work from ING: https://github.com/ing-bank/zkproofs
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If the miner wins the current PoW puzzle the 12.5 BTC to self will become “real” and will be credited
to her private key.

Many permissioned blockchains, like Hyperledger, do not have a native currency because there is no
need to reward nodes (which can be anonymous) for participating in the consensus and chain security
computations. Given the requirements of INTERLACE, there seems to be no need for a native protocol
currency. Indeed mutual credit works by moving from the paradigm of liquidity to that of clearing
and therefore from viewing money as a commodity to money as unit of information meant to facilitate
trade and local economic development. The important concept is not whether or not an asset is present
but what value someone’s credit balance has — a value that can be negative as well as positive.

2.2.6 Latency vs. Performance in Consensus

As shown in Figure 2.2, the consensus objective can be cast as a trade-off between network latency
vs. blockchain performance expressed in transactions per second [Tz /s] ([16], cited in [1]). Stellar here
claims the middle ground.

A

Low latency

(Tx/s > 10,000) Standard BFT

......................................... g

Performance
Stellar
High latency Standard PoW
(Tx/s < 100) ; ; (Bitcoin)
: ; >
< 20 nodes > 1000 nodes

Node Scalability
Fig. 2.2: Network latency-node scalability trade-offs, after [16]

2.3 Brief Summary of Some DLT Technologies

The INTERLACE team has looked at a number of blockchain technologies, listed here in order of
decreasing openness:
» Holochain

s Ethereum

= Stellar

Quorum (permissioned Ethereum)

Hyperledger Fabric
= Corda

In this chapter we analyse and discuss them briefly in turn, emphasising the algorithmic, architectural,
mathematical, or financial aspects that are most pertinent to INTERLACE. The frameworks that have
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made it into this short list are all interesting for one reason or another, and at different points each
of them was seriously taken into consideration for adoption. Stellar has an interesting mathematical
foundation which is therefore studied and discussed in some detail in the Appendix since mathematical
understanding can be transferred to other frameworks. The one that comes closest to the requirements
of the Sardex mutual credit system is Hyperledger, as will be shown when discussing the summary
table at the end fo the chapter.

2.3.1 Holochain

Holochain is the only DLT we have examined that is agent-centric. This means that it does not require
global consistency on the same data on a global ledger, but keeps track of individual and mutual peers’
data histories, with global replication as an optional feature achieved through DHT and gossiping.

Holochain is composed of two parts: Holochain proper is the underlying technology — not a global
blockchain but in any case a persistence layer composed of many individual chains [8], and Holo, the
interaction, governance, and financial framework that runs on Holochain.

2.3.2 Ethereum

Ethereum is a data and computation-centric distributed application platform. It is currently under
heavy development on both its core components (Layer 1) as well as on higher layers such as payment
channels or collective funding (ICO). Interestingly, Ethereum as a platform can function with various
degrees of openess of partecipation. The public main net is open to anybody without any verification
as long as the willing participating nodes follow the protocol rules and provide the required resources.
Apart from the public mode, Ethereum can work also in private consortium mode (as discussed below
for Quorum) as well as with side-chains (see Proof of Authorithy where a known-to-random validator
set takes care of consensus). It is the platform with the widest developer adoption; yet, in its public
version it is too slow to support the full transactional engine needed for current and future Sardex
operations

2.3.3 Stellar

Stellar is a system for international currency transfer and exchange. Thus, although it has its own
native token (Lumens, XLM), this is similar to Ethereum gas in the sense that its main function is
to prevent spamming. Thus, the transaction fees to be paid in XLM are very small. The actual assets
being exhanged are “credits” acquired from Stellar Anchors (agents performing and holding the funds
which are issued as digital credits on the Stellar ledger). The credits correspond to fiat currency that
the counterparties wish to trade or exchange. In other words, the units being recorded on the Stellar
ledger chain are analogous to the “statistical Euros” discussed in deliverable D3.1 [10].

2.3.4 Quorum

Quorum is a private and permissioned version of Ethereum developed by J.P. Morgan. It is optimised
for enterprise consortia.® 6

2.3.5 Hyperledger

The main points of interest of Hyperledger Fabric are [1]:

5 https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum_Architecture_20171016.pdf
6 quorumwhitepaper
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» It supports modular consensus protocols, which allows the system to be tailored to particular
use cases and trust models.

» Fabric is the first blockchain system that runs distributed applications written in stan-
dard, general-purpose programming languages, without systemic dependency on a native
cryptocurrency. This stands in sharp contrast to existing blockchain platforms that require
smart contracts to be written in domain-specific languages or rely on a cryptocurrency.

m Fabric realizes the permissioned model using a portable notion of membership, which may
be integrated with industry-standard identity management.

m Fabric achieves end-to-end throughput of more than 3500 transactions per second in certain
popular deployment configurations, with sub-second latency, scaling to well over 100 peers.

Hyperledger Indy-Plenum Byzantine Fault Tolerance (PBFT).” PBFT is based on RBFT: Redundant
Byzantine Fault Tolerance [3].

2.3.6 Corda

Corda [9] is a permissioned distributed database for banking networks which does not use a blockchain.
As explained in [9] (pp 29-30) and mentioned above, the structuring of a blockchain into blocks is a
consequence of the difference in time needed to perform a transaction and to reach consensus on that
transaction. If in a blockchain like Bitcoin or Ethereum each transaction needed a proof of its validity
by global consensus, separately, the number of circulating but not yet proven transactions would be
huge and the stable, validated ledger would grow even more slowly. By grouping the transactions into
blocks that need to be validated the number of things the network needs to reach consensus on is
greatly decreased, and the system reaches some level of efficiency (although much less than VISA — 7
Tx/s for Bitcoin vs. 57,000 max Tx/s for VISA, for example [2]).

Since Corda is permissioned and does not require global consensus, it does not need to group
transactions into blocks or to run a consensus protocol. The transactions still need to be verified
and validated, which is done by so-called Notaries, after which they are written into the ledger. The
ledger is distributed and each node has a copy, but not all nodes see the same information. Visibility
of the data is strictly related to whether or not the data is directly related to a particular peer or
counterparty in the transaction.

2.4 Summary and Comparison Table

Tables 2 and 3 provide a summary of some of the aspects we have analysed when comparing different
blockchain frameworks. The rows are in the same order as the sub-sections of the previous section,
from the most open to the most closed frameworks. The order of the topics in each table could perhaps
be organised better; they were added on as they were encountered during the literature review. There
are two tables due to page layout constraints, and each table has two sets of rows because the number
of properties we examined was too large to fit in a single row. So Tables 2 and 3 are in practical terms
a single comparison table. The six frameworks listed represent the best candidates out of the much
larger set that was examined.

We ended up choosing Hyperledger, so this table could be used as a way to explain the different
trade-offs we encountered in making this choice. For example, as already discussed from the proposal
stage of the project, the first choice was to use a private, permissioned platform as the most logical
transition from the current centralised relational database to a blockchain for business and trade,
where privacy matters.

" https://github.com/hyperledger/indy-plenum/wiki
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However, we examined also several public chains because some aspects of the system may benefit from
greater transparency. For example, once circuits are established beyond the Eurozone it will become
necessary to set up a credit-currency conversion protocol for inter-circuit trades, since each circuit’s
credit currency will be pegged 1-1 to the local fiat currency of the country where it is located. It may
be better to use a public chain for such a currency exchange function, which we envisage as involving
a single rate of exchange in both directions and not two separate rates, one for buying and one for
selling as is done normally by the banks and exchange bureaus. In other words, speculation on the
currency markets would go against the principles of the circuits, which are built on and in support of
the (local) real economy and not the financial economy. Therefore, the greater transparency afforded
by a public, permissionless chain would be more appropriate for this function than a private chain.

Read Write Data/ Smart Smart Consensus
DLT Focus Access Access Agent Contracts Contract Model
Language(s)
Holochain |General-purpose Public Permissionless Agent- Yes Lisp, JS, Rust Local
platform DHT DHT centric
Ethereum |General-purpose Public Permissionless| Data-centric Yes Solidity Global, PoS
platform Chain Chain on EVM
Stellar Cross-border Public Permissionless| Data-centric | Limited Limited SCP
exchange (FBAS)
Public and Solidity Configurable,
Quorum banking Private Permissioned | Data-centric Yes on EVM voting-based
sectors (PoS, LE, BFT)
Enterprise, Configurable,
Hyperledger B2B, & Private Permissioned | Data-centric Yes JS, Go, Java voting-based
supply chain (PoS, LE, BFT)
Business Bytecode Local state
Corda agrmts between Private Permissioned | Data-centric Yes subset (Notary pools),
fin. institutions on JVM pluggable
Backup Monetary Transaction
DLT System Interfaces Model Blockchain [Immutable Validation Architecture
Holochain No Rust, Mutual Credit| Individual | No (link to Local to
WebAssembly chains repl. code) the parties
Ethereum External SQL Native and Yes Yes Each peer Order-Execute
mirror DB token Assets
Stellar MySQL, Horizon Native and Chain of Yes Global Execute-Order-
PostGres token Assets ledgers Validate
Quorum No Constellation | Token assets Yes Yes Every node. Data | Order-Execute
(Ethereum) local to the parties
Hyperledger| Key-value SQL Adaptable to Yes Yes Validator Execute-Order-
store DB NoSQL Mutual Credit peers Validate
Corda H2, Postgres SQL Token assets |Global ledger Yes Local to Execute-Order-
FPML locally visible the parties Validate

Table 2: Summary table comparing the main properties of different types of blockchain

The next property of some interest and relevant is the difference between data-centric and agent-centric
blockchains. Holochain is currently the most well-known agent-centric platform in the monetary space,
although other agent-centric system that have emerged recently include the so-called DWEB space.
Notable examples are Scuttlebutt,® WebTorrent,” BeakerBrowser,'® IPFS,'' Aragon,'? Matrix,
IndieAuth,'* and ActivityPub.!®

8 https:
o https:
10 https:
1 https:
12 https:
13 https:
4 https:
15 https:

//hacks.
//hacks.
//hacks.
//hacks.
//hacks.
//hacks.
//hacks.
//hacks.

mozilla.
mozilla.
mozilla.
mozilla.
mozilla.
mozilla.
mozilla.

mozilla.org/2018/08/dweb-social-feeds-with-secure-scuttlebutt/
org/2018/08/dweb-building-a-resilient-web-with-webtorrent/
org/2018/08/dweb-serving-the-web-from-the-browser-with-beaker/
org/2018/08/dweb-building-cooperation-and-trust-into-the-web-with-ipfs/
org/2018/09/aragon-ethereum-dweb/
org/2018/10/dweb-decentralised-real-time-interoperable-communication-with-matrix/
org/2018/10/dweb-identity-for-the-decentralized-web-with-indieauth/
org/2018/11/decentralizing-social-interactions-with-activitypub/
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https://hacks.mozilla.org/2018/08/dweb-building-cooperation-and-trust-into-the-web-with-ipfs/
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https://hacks.mozilla.org/2018/10/dweb-identity-for-the-decentralized-web-with-indieauth/
https://hacks.mozilla.org/2018/11/decentralizing-social-interactions-with-activitypub/

INTERLACE Project (Grant no. 754494) 15
Although the development of Holochain is not yet completed, it is interesting because it allows the
platform to run on each terminal (e.g. phone) separately and independently, an architecture which has
been dubbed “fog computing”.'® In Holochain, each agent has its own individual chain and applications
“DNA”). This could be useful for scalability purposes, in the long term, and could also be important
as a censorship-resistant alternative to the Bitcoin and Ethereum architectures. In the short term the
data-centric approach is sufficient for the objectives of INTERLACE.

Smart contracts are obviously of central importance in a business environment where the business
logic needs to be formalised. The consensus model is not as important in a permissioned environment,
where the rate of transaction processing and completion takes precedence. Different backup systems
and interfaces are available on different chains, but they are not as important discriminating properties.

Regulatory/ |Explicit links| Business |Computational| Turing- Contract |Inter-Node
DLT Supervisory of SCs to flow Model Complete Object Comm.
nodes legal prose | modelling
Holochain Random No No Yes Local
Peers
Ethereum No No No Virtual (global) No Stateful Global
Computer
Stellar Compliance No No Ledger + No Ledger-based
Server headers
Quorum No Yes No Virtual (global) No Stateful Local
Computer
Hyperledger Yes Yes, with No UTXO + Yes Global
Accord/Clause Worldstate
Corda Yes Yes Yes UTXO Yes Stateless Local
(Flows)
Native Transaction AML
DLT Token Fees Backing Convertibility |Compliance
Yes (Holo Fuel Yes Fiat currency, Up to app
Holochain + HOT Token | (Holo Fuel) |Hosting CPU Yes providers
on Ethereum)
Ethereum Yes Yes No Yes No
(Ether: ETH) (Gas)
Stellar Yes Yes, in XLM No N/A MySQL
(Lumens: XLM)| (Very small) PostGres
Quorum No Custom- N/A Yes Identity
izable service/node
Hyperledger No Custom- N/A N/A Identity
izable service/node
Corda No Custom- N/A N/A Identity
izable service/node

Table 3: Summary table comparing the main properties of different types of blockchain (contd.)

The most important property after the private/public choice is that the INTERLACE blockchain
must support mutual credit. Out of the frameworks we examined, only Holochain and Hyperledger
are compatible with mutual credit. Holochain was designed from the ground up as a mutual credit
system, whereas Hyperledger can be adapted to become a balance-centric rather than asset-centric
chain. In all the others the “asset” cannot be a balance that can be either positive or negative: it is
assumed to be a positive amount, or a deed, or some quantity of something.!” Because the Hyperledger

16 https://en.wikipedia.org/wiki/Fog_computing

"In the latest release of Corda it is possible to use an ‘obligation’ as a debt amount linked to
an account (https://docs.corda.net/releases/release-M8.2/api/kotlin/corda/net.corda.contracts.asset/
-obligation/). Although this might not be easy to code for us and although Corda is more suitable for networks of
banks than for our purposes, their latest developments at the company structure level are extremely interesting for
us and are discussed brielfy in the final architecture deliverable (D2.3).


https://en.wikipedia.org/wiki/Fog_computing
https://docs.corda.net/releases/release-M8.2/api/kotlin/corda/net.corda.contracts.asset/-obligation/
https://docs.corda.net/releases/release-M8.2/api/kotlin/corda/net.corda.contracts.asset/-obligation/

16 D2.2

assets could be programmed, through smart contracts code, to act as the balance of a mutual credit
account, it becomes the obvious choice for INTERLACE.

Whether or not the technology is a blockchain or a more general DLT was not really an issue.
Immutability is important for a public chain but not as much for a private chain since as a matter
of course we need to mirror everything onto a relational DB as backup. However, it does imply that
private user data cannot be stored on-chain, otherwise we would be violating GDPR requirements (for
example, the right to be forgotten). Since Hyperledger is immutable, private data'® can only be stored
in a separate DB, either SQL or key-value. Finally, the execute-order-validate architecture appears
to be more suitable for permissioned chains and much faster than most consensus algorithms of the
public chains.

The next important feature of interest is Turing-completeness. From a security point of view Turing-
completeness is not necessarily a good feature because it implies a larger ‘attack surface’ for malicious
hackers. However, it can also imply the use of an established language for the smart contracts. This is
the case of Hyperledger, which supports JS, Go, and more recently also Java. In addition, languages
that have been developed specifically for smart contracts can have bigger problems. For example,
Ethereum’s Solidity is not regarded as a properly structured language, and also has security issues
of its own.' For these reasons we decided to stick with Hyperledger and the interoperability of well-
established languages.

Because Sardex has its own currency unit, a native token was not important for us. In fact, it would
create problems since it would interfere with the financial, economic, and social functions of mutual
credit [12]. Anti Money Laundering (AML) and regulatory compliance, on the other hand, are very
important for INTERLACE and for Sardex. This was another point in favour of Hyperledger since it
exposes a REST interface that could be fed into a regulator’s dashboard or data explorer.

8 ‘Personal information’, as per the GDPR definition.
19 See, for example, https://news.ycombinator.com/item?id=14691212


https://news.ycombinator.com/item?id=14691212

Chapter 3

Conclusion

In conclusion, this deliverable reported on the main blockchain technologies that we have investigated,
and concluded that Hyperledger Fabric is the best option for INTERLACE. The mathematical basis of
the Stellar consensus algorithm were studied in some detail, and reported in the Appendix, in order to
get a better understanding of the level and type of rigour that can be obtained about truth statements
related to variable-node networks under possible Byzantine attacks. The iterative refinement of the
specification is actually reported in Chapter 2 of D3.1 [10].
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Basic Mathematical Framework for Stellar

Paolo Dini

A.1 Introduction

In this Appendix we provide a mathematical summary of the Stellar Consensus Protocol (SCP) [11]. The presentation
involves a sequence of definitions interspersed with theorems and their proofs. Understanding the theorems and their
proofs is essential to understanding the Stellar system and the SCP. Therefore, although we follow Mazieres’s paper [11]
very closely, in some cases we provide more elementary explanations of the mathematical formulation, relying on figures
and diagrams created ad hoc as needed.

SCP is based on a new decentralized agreement system, also defined and developed in [11], called Federated Byzantine
Agreement System (FBAS). FBAS and SCP, together, provide an alternative to Bitcoin’s Proof of Work (PoW) [2] or
Ethereum’s Proof of Stake (PoS)?° to achieve consensus. FBAS is a generalization of Byzantine agreement,' where
the latter is analogous to a permissioned system. Although the early implementation of the new Sardex INTERLACE
platform will be permissioned, we wish to develop an architecture that can easily replace centralized control with local
consistency between transacting parties. At the level above in the network hierarchy, we will also need to manage a
federated network of circuits. Also here the capability to transition to a scalable decentralized architecture is preferable
to a traditional centralized approach, although at this level Corda may be a more appropriate Distributed Ledger
Technology (DLT) framework.

A.2 Federated Byzantine Agreement System

A.2.1 Basic Components

A Stellar network relies on a FBAS to achieve consensus in the absence of central control. The consensus is on the update
of replicated states such as ledger records corresponding to transactions. The purpose of the consensus protocol is for
a set of nodes to reach agreement on a given update. Each update is identified with a unique slot which also encodes
information on inter-update dependencies — for example as consecutively numbered positions in a transaction ledger.
A FBAS runs a SCP that ensures that the nodes agree on slot contents. Agreement is defined in terms of safety of
operation; the definition is somewhat recursive so it may need to be refined later:

Definition 1. We say that a node v can safely apply update x in slot i when
» it has safely applied all the updates in all the slots upon which i depends, and

» it believes all correctly functioning nodes will eventually agree on x for slot i.

Definition 2. When node v has safely applied update z in slot i we say that v has externalized z for slot i.

The reason for this term is that once the contents of a slot have been accepted by other nodes they (the other nodes)
could perform irreversible actions as a consequence, which v cannot do anything about: the contents are now outside or
external to the control of the originator node v.

A challenge for FBA is that malicious nodes can outnumber honest ones, such that determining a quorum by simple
majority is not sufficient to guarantee safety. FBA selects quorums in a decentralized way, leading to a layering of the
network into a hierarchy such that different structures are relevant at different levels, as shown in Figure .1. The top
level is provided by a set of nodes V. The second level is called a ‘quorum’, denoted by U and defined as a set of nodes
sufficient for those nodes to reach agreement. The level below is a set of ‘slices’ of a given node v, written Q(v), where
a slice is a subset of a quorum whose nodes agree with that single node v. As the figure shows, a node v may belong
to more than one slice, with the cardinality of Q(v) (i.e. |@Q(v)|) providing the quantification. We now provide formal
definitions and mathematical relations between these quantities.

Using the usual notation 2% for the power set?? of the set X, 2V is the power set of V, i.e. the set of all possible quorum
14

slices. At the next level, 2%  is the power set of quorum slices, i.e. the set of all possible sets of quorum slices. Figure .2

shows a visualization of the elements of these kinds of power sets.

20 https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ

2! nttps://en.wikipedia.org/wiki/Byzantine_fault_tolerance

22 The power set of a set X is the set of all possible subsets of X [4]. For a set of N elements, its power set turns out to
have 2V elements, hence the notation.
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Fig..1: The five levels of a Stellar network or FBAS

Fig..2: L: a) ¢ is an element of 2V. R: b) Q(v) is an element of 22",

The function @ assigns to each node v € V a set of slices {q1, g2, , gx }. Here the curly brackets denote set and k is
the number of slices for a given node v. Formally,

Q: vV —22\0, (1)
where \() means that the empty set is not in the range of this function (Q(v) can never be e]rnpty).23 In general,
Yv e V,V¥q € Q(v), v € g, (2)

which reads ‘For all nodes v members of the set V and for all slices ¢ members of the set @(v), node v is a member of
some slice ¢q’.

Definition 3. A Federated Byzantine Agreement System (FBAS) is a pair (V, Q).

Definition 4. A set of nodes U C V in a FBAS (V, Q) is a quorum 4ff U # 0 and U contains a slice for
each member:

Vo e U,3g€Q(v) | ¢C U. 3)

In English: for all v members of a quorum U, there exists a slice ¢, member of @(v), such that the slice is a
subset of, or equal to, the quorum U.

Definition 5. A quorum slice ¢ is a subset of a quorum U sufficient to convince a particular node v of
agreement.

23 Tt is not immediately clear whether this is a consequence of how this function operates or whether it is a requirement
that we are adding arbitrarily to ensure that it does what we need. TBD.
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Therefore, a quorum slice is usually smaller than a quorum, as shown in the figures above.

The ‘convincing’ is depicted graphically by an arrow that indicates dependence between nodes in a manner analogous to
inheritance in UML class diagrams. For example, as shown in Figure .3a, v2 can convince v; but not vice versa, i.e. v1
depends on itself and on v» while v depends only on itself. Figure .3b shows the corresponding slices. Note that in this
simple case the quorum of this set of nodes V = {v1, 12} equals the slice for vi: V = U = ¢g(v1) = {v1, 12}, whereas the
set of slices Q(v1) is written Q(v1) = {{v1,v2}}, where the outer curly brackets indicate the set of slices @(v1) and the
inner curly brackets indicate the slice ¢1 = q(v1).

A.2.2 Examples

Figure .4 shows a more complex interdependence between a set of 4 nodes, as Example 1. The arrows imply that
v2, vg, and w4 each has the same slice. Thus, ¢(v2) = q(vs) = q(va) = {w2,vs3,vs}. In this case we also have that
Q(v2) = Q(us) = Q(va) = {{wv2,vs3,v4}}. In this example, although {{vz,v3,v4}} is a quorum, the smallest quorum
involving v1 must involve all four nodes.

q(v,)= 1, v },/// Q:(Ziz) = {oo}} N

’ N |

I/ / \l |
1
C @ \ e /19(712): {v,} /'

~ S __-

Q ;) ={{v;: v }\}\\\ __________________ ="

Fig. 3 L a) v2 can convince v; but not vice versa. R: b) The slices of v; and of v,.

Figure .4 also provides a clear example of the difference between a slice and a quorum. The slice of vy is ¢(v1) = {v1, v2, v3},
which means that these three nodes are all that’s needed to convince v1. However, this set of nodes cannot be a quorum
because the slices of v2 and vs include nodes (actually only one node, v4) that are outside of this set, which contravenes
Definition 4.

=Q ;) =0 (v,)
= {{vg, v, 043}

Fig. .4: Example 1. L: a) The slices of this network. R: b) The smallest quorum involving v. (After [11])

In traditional, non-federated Byzantine systems all nodes have the same slices. Therefore, non-federated systems do not
distinguish between slices and quorums:

Vo,v €V, Qu) = Q(v)). [BAS] (4)
In our case, instead, in general we have that
Yo, v €V, Qui) # Q(v)). [FBAS] (5)

The important point made by Mazieres is that whereas BAS is not scalable, as exemplified by the huge CPU overhead
the Bitcoin consensus protocol requires, FBAS is scalable.
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Example 2 It is worth discussing a second example from Mazieres, as shown in Figure .5. The figure shows
three new notational concepts:

» a reflexive dependence arrow can be drawn explicitly
» sets of nodes can be grouped explicitly into separate sets or tiers, and

» the dependence arrows can carry specific labels.

For example, the label on the reflexive arrow on the top tier indicates that at least 3 nodes are needed for
consensus. According to the definitions above for the arrow directions, the top tier does not depend on the
tiers below, and it is precisely for this reason that it is the ‘top’ tier. The label on the arrow between the
middle and top tiers indicates that the slice of any one node from the middle tier is composed of itself plus
any two of the tier above. The slice of either vy or w1 is composed of itself plus any two nodes from the
middle tier. Since each of these, in turn, depends on any two of the nodes of the top tier, neither such slice
can be a quorum. A quorum involving either vg or v1o will have at least 5 and at most 7 nodes. A quorum
involving both vy and v10, on the other hand, will have at least 6 and at most all 10 nodes.

3/4

@ @ @ @ Top tier: central bank, EIB, IMF, ...
A

2/4

@ @ @ Middle tier: national network of banks
A

2/4

@ @ Leaf tier: local branch

Fig. .5: Three-tier network (After [11])

In Figure .5 the top tier according to Maziéres could be composed by a number of global financial institutions.
The middle tier could be sets of banks operating at national level, with a single such set corresponding to a
single country shown here. The bottom tier would be a single branch office, with the nodes inside representing
individual customer accounts.

@ Top tier: Sardex S.p.A.

e @ @ @ ) () | ationai ne
3 national networks of circuits

@ @ @ Leaf tier: regional circuits

Fig. .6: Possible mapping to INTERLACE circuit architecture. (After [11])
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In Figure .6, on the other hand, the top tier would be only the single Sardex S.p.A. company. The middle
tier could be composed by different national jurisdictions, each of which containing a set of circuits; the
figure shows two such jurisdictions corresponding to two different countries. The bottom tier would then
correspond to separate individual circuits, with the nodes corresponding to individual company accounts.
There are no labels on the arrows because the dependence is to a specific node in every case, generating a
centralized hierarchical network.

Although the architecture of Figure .6 may correspond to an initial implementation of the INTERLACE platform, it
does not make use of the distribution capability of the Stellar consensus protocol, so let’s proceed with the development
of the protocol to see what will become possible.

A.2.3 Safety and Liveness

Nodes can be either well-behaved or ill-behaved. A well-behaved node chooses sensible quorum slices and obeys the
protocol, including responding (eventually) to all requests. Ill-behaved nodes suffer Byzantine failure, meaning that they
behave arbitrarily due for example to a malicious modification of the software, or may have crashed. The goal of FBAS
is to ensure that all well-behaved nodes externalize the same values in spite of such ill-behaved nodes.

Definition 6. Two nodes in a set V are divergent if they externalize different values to the same slot. A set
V' of nodes in a FBAS is safe if no two of its elements (nodes) externalize different values for the same slot.

Definition 7. A node v € V is blocked if it is in some dead-end state from which consensus is no longer
possible. A node v € FBAS has liveness if it can externalize new values without the participation of any failed
or ill-behaved nodes.

Definition 8. Nodes that enjoy both safety and liveness are called correct. Nodes that are not correct have
failed.

Thus, nodes without liveness are blocked, whereas nodes without safety are divergent. Figure .7 shows the set inclusion
relationships between these different kinds of nodes in a set V. The reason a divergent or blocked node is shown under
the well-behaved category even though it has failed is that, unlike ill-behaved nodes, it may have started as a correct
node but may fail if its choice of slice causes it to wait indefinitely for messages from an ill-behaved node (this makes it
blocked) or, worse, if its state is maliciously modified by messages from an ill-behaved node (this makes it divergent).
Thus, the reason divergent nodes are a subset of the blocked nodes is that an attack that violates safety is strictly more
powerful that one that violates only liveness.

ill-behaved well-behaved

[] Correct

Correct
] Failed

& J\. J
Fig..7: Set inclusion relationships between node categories. (After [11])

Mazieres explains that the above definition of liveness is weak because it only says that a node can externalize, not that
it will or must. As a consequence, there is a possibility for consensus to be forever delayed by, for example, preemptive
reordering of the transactions. It is not clear whether this issue matters in the case of INTERLACE since we will not
implement a completely decentralized system: some level of centralized control is likely to remain. Mazieres in any case
provides relevant references that can be consulted if this issue needs to be analysed in depth and resolved in some robust
way.

Optimal Resilience: Quorum Intersection and Dispensable Sets
As is commonly assumed for asynchronous systems, messages between well-behaved nodes are eventually delivered, but
can otherwise be delayed indefinitely or reordered arbitrarily. This section starts becoming more involved because it
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addresses the following non-trivial question: Given a specific (V, @) and a subset of V that is ill-behaved, what are the
best levels of safety and liveness that a FBAS can guarantee in an arbitrary network?

Definition 9. A FBAS has quorum intersection iff any two of its quorums share at least one node.* In
other words, VU;, U; € FBAS, U; N U; # 0, where i and j range over the number of quorums for a given FBAS.

Therefore, when a FBAS has many quorums, quorum intersection (QI) fails when any two do not intersect. We remind
the reader that Q(v;) is just the set of slices of a given node v; and, depending on the slices of all the other nodes
v; € Q(v;), may or may not be a quorum U C V. Thus, although in the simple examples that follow each Q(v) is a
quorum, this is by no means the case in general.

Q)= Q) =0k (o) (0) Qb =06 =00,
= {for. 0 03} = ({0, ;. 0}

e

Fig..8: A set of nodes without QI. (After [11])

Figure .8 shows a system of 6 nodes that lacks QI, since the function @ allows two quorums on the set of 6 nodes that
do not intersect. Maziéres says that the two quorums can separately agree on contradictory statements. In other words,
since vs cannot communicate with vy, it could say something different from what v; is saying for a given slot. Maziéres
says that the whole set of all nodes {v1,--+ ,vs} is also a quorum, which in this case we can call U, and it intersects the
other two. Is this true? If we look back at the definition of a quorum (Definition 4), we can verify that yes, it is correct
because each node has a slice that is part of U. So this is an example of a system that has multiple quorums but two of
them do not intersect and, therefore, the system does not have QI. We can believe that there is no certainty that v can
contradict or agree with vs even though they both belong to U.

Q(v;) = Hosi}

Q) =Q) =0 ()y——(0 () Qe)=Q6) =0

= {{v; vy, V3, 0,1} = {{vy 05, V5, 0,1}

> >

Fig..9: A set of nodes with QI. (After [11])

Safety cannot be guaranteed because such a system can operate like two separate FBAS systems that do not communicate.
However, safety may not be possible even in a system with QI, like the one shown in Figure .9, if the intersecting node is
ill-behaved. If v; makes inconsistent statements to the left and right quorums they are as good as disconnected. Therefore,
safety can be guaranteed only if the well-behaved nodes have QI; or, put otherwise, a FBAS (V, @) can survive Byzantine
failure by a set B C V iff (V, Q) has QI after deleting the nodes in B from V and from all slices in Q.

More formally,

Definition 10. If (V,Q) is a FBAS and B C V is a set of nodes, then to delete B from (V, Q), written
(V, @)%, means to compute the modified (V \ B, Q”), where

Q"(v)={g¢\B|¢eQv)}, YveV\B. (6)
It is the responsibility of each node v to ensure that Q(v) does not violate QI. From Maziéress paper it is not clear how,
however. Be that as it may, assume that Figure .9 evolved from the 3-node FBAS {v1, v2, v3} to a system that includes

24 The term ‘iff’ means ‘if and only if’. Tt implies that the causal dependence works in both directions, in contrast to
merely ‘if’ which works only in the reverse direction. In symbols, ‘A iff B’ is written A < B, whereas ‘A if B’ is written
B = A and is also read as ‘B implies A’.
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also {va, vs, U6 }. Assume now that {4, vs, vs} are malicious such that they choose slices that do not satisfy QI. But Q(v)
is meaningless for a malicious node. That’s why the necessary condition for safety, QI after deleting ill-behaved nodes, is
unaffected by the slices of ill-behaved nodes. The system (V, Q)1*4:¥5:%} restores QI for {1, v2, v3}. Note that we have
not yet said how such deletion takes place. For now we just say that the protocol must guarantee safety for {1, v2, v}
without these nodes having to know that {v4, Vs, v6} are malicious.

Turning now to dispensable sets or DSets, the safety and liveness of the nodes outside a DSet can be guaranteed regardless
of the behaviour of the nodes inside the DSet.

Definition 11. Let (V, Q) be a FBAS and B C V be a set of nodes. We say that B is a dispensable set or a
DSet iff:
w (V,Q)% has QI (Intersection)

s V\Bisaquorum OR B=1V (Availability)

As explained by Maziéres, availability protects against nodes in B not replying to requests or impeding other nodes’
progress. QI protects against nodes in B making contradictory assertions that enable other nodes to externalize
inconsistent values for the same slot. These two threats depend on slice size in opposite ways: greater slices increase
the chance for QI, but also the chance that they will contain failed nodes, impacting availability. Smaller slices decrease
the chance of failed nodes, but also the likelihood of having QI.

The smallest DSet containing all ill-behaved nodes may contain also well-behaved nodes, if they depend on the ill-behaved
ones. For example, in Figure .5 if vs and v are ill-behaved the smallest DSet would need to include also vg and v since
the lowest tier depends on any 2 of the nodes in the middle tier, and so it may depend on the two that are ill-behaved.

Definition 12. A node v € FBAS is intact iff 3 DSet B containing all ill-behaved nodes and such that v ¢ B.

Definition 13. A node v € FBAS is befouled iff it is not intact.

Theorem 1. Let U be a quorum in FBAS (V, Q). Let B C V, so that B is not necessarily a slice of U. And
let U= U\B. If U #0, then U' is a quorum in (V, Q)%.

Proof. First, as shown in Figure .10A, since U is a quorum, every v € U has a slice ¢ € Q(v) such that ¢ € U:
Jdg € Q(v)|g e U, YveU. (7)

Second, as shown in Figure .10B, since U’ C U, every v € U’ has ¢ € Q(v) such that ¢\ B C U":
Jge Q%(v)qe U, Yvel. (8)

Therefore, U’ is a quorum in (V, Q)%. O

Fig..10: A) Quorum U C V with set BC V. B) U' = U\ B and ¢®(v) = ¢(v) \ B.

The next theorem is far from obvious.

Theorem 2. If Bi and Bz are DSets in a PBAS (V, Q) that has QI, then B = B1 N By is a DSet too.
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Fig..11: Visualization of a set of nodes V with two
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Fig. .12: The two subsets U; and U,

Proof. Let Uy = V \ By and Uz = V \ Bz be two subsets of V defined by taking away the two DSets in turn,
as shown in Figure .12. Note that by Definition 11 both subsets have QI. By the same definition, both subsets
are also quorums.

Case 1. If Uy =0, then By = V and B = V N Bz = Bo, which is a DSet.
Case 2. Similarly, if Us = (@, then Bo = V and B = B; N V = By, which is a DSet.

Case 3. If we are not at these two extremes, as just stated above by quorum availability U; and Us are both
quorums in (V, @). Also, the quorum definition 4 implies that Ui U U (which also equals V \ B) is also a
quorum (see Figure .13A). Therefore, V \ B is a quorum. Therefore, By N By satisfies availability in V despite
B. This proves the availability condition of a DSet, i.e. availability despite B. Proving QI despite B requires
quite a bit more work.
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Fig. .13: Union and intersection of the two subsets U; and U

Let U = Ui N Uz (see Figure .13B). Note that U also equals Uz \ By and Ui \ B2. By the definition of QI
(Definition 9), U1 N Uz # (. Then by Theorem 1 U3 N Uz = Uz \ By is a quorum in (V, Q)Bl. In other words,
Figure .13B is a quorum in Figure .12A.

xLet U, and Uy, be two quorums in (V, Q)B = U; U Uz. We begin the analysis by working with U,, and repeat
the argument later for Uj.
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s If U, \ B1 =0, U, must be at most C By (but not include B, by construction)
= Similarly, If U, \ B2 =0, U, must be at most C By (but not include B, by construction)
s If U,\ B1 =0 AND U, \ B> =0, then U, = 0.

Now whether or not B; and By are quorums is not relevant to the argument since they are DSets by assumption.
They are sets we wish to ignore. Therefore, the cases above are not of interest and are irrelevant. Therefore, we
are only interested in the two cases

U \Bi#0 OR Ua \ B2 # 0. (9)
This implies that there are now three possibilities for U,:
(v, Q)™

2. Uy \ Bz is a quorum in ((V, Q)B)B2 (V, Q)%
3. Both, i.e. the quorum is outside of both By and Ba.

1. Us\ By is a quorum in ((V, Q)B)B1

What we show next is that if 1) is true, then 2) is true too, and vice versa. Therefore, since we have ruled out
all other possibilities, the next few lines will show that the only possibility left is 3).

If 1) is true, then (U, \ B1) N U # 0, by QI of (V, Q)P1. In fact, since B; is a DSet by construction, (V, Q)%
has QL. And since (U, \ B1) and U are both quorums, by definition of QI their intersection is not empty. Now,
(U, \ B1) N U happens to equal (U, \ B1) \ B2. Therefore, (U, \ B1) \ Bz # (. If that is the case, then even more
U, \ B2 # 0. Therefore, by Theorem 1 U, \ B is a quorum in (V, Q)?2.

Similarly, if 2) is true, then (U, \ B2) N U # 0, by QI of (V, Q)”2, since B is also a DSet. Since (U, \ B2) N U =
(Ua \ B2) \ Bi, (Us \ Bz2) \ B1 # 0, and U, \ B1 # 0 either. Therefore, by Theorem 1 U, \ Bi is a quorum in
(V, Q)"

Therefore, 3) is the only possibility left. Knowing this helps a global understanding of all the possibilities, but
we have actually done more work than was strictly necessary to prove the theorem. All we need to focus on is
1): U, \ Bz is a quorum in (V, Q)%2.

Now go back to * and follow the same argument for U,. Look at the possibility 1) that U, \ B: is a quorum.
Following the same argument we can show that this implies that U, \ Bz is a quorum in (V, @)?2. But then, by
QI despite Bz, we necessarily have that

(Ua\BQ)ﬁ(Ub\Bz)#w. (10)

If that’s true, U, N U, # @ is even more so. Since U, and U, are any two quorums in (V, @)%, we have proven

QI despite B. Hence B is a DSET. -

The above theorem may seem “much ado about nothing”, but in fact it has shown a rather important general fact,
namely that DSets are closed under intersection. We use this fact immediately, in the next theorem.

Theorem 3. In a FBAS with QI, the set of befouled nodes is a DSet.

Proof. In the definition of DSet we did not specify whether the nodes contained in a DSet were ill-behaved,
blocked, divergent, or correct. We only said that what’s left after we take a DSet is a quorum and, in addition,
it has QI (if it happens to contain other quorums).

Now let a FBAS contain an arbitrary number of DSets, such that each DSet may contain a number of ill-behaved
nodes. Let B, be the specific intersection of these DSets that contains all the ill-behaved nodes. According to
Definition 12, a node v is intact iff v & Biin. Therefore, Bm:y is the set of befouled nodes. By Theorem 2, Bin
is a DSet. O
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