

	

Interacting Decentralized
Transactional and Ledger
Architecture for Mutual Credit	

	

	

	

	

WP2	

Iterative	Architecture	Requirements	and	Definition	

	

	
Deliverable	D2.1	

Requirements	and	Architecture	Definition	

	

	

	

	

	

	

	

Project	funded	by	the	European	Commission	
Information	and	Communication	Technologies	
	
FET	OPEN	Launchpad	Project	
Grant	no.	754494	

INTERLACE Project (Grant no. 754494)

D2.1 2

Contract	Number:	754494	

Project	Acronym:	INTERLACE	

	

Deliverable	No:	 D2.1	

Due	Date:		31/07/2017	

Delivery	Date:		20/10/2017	(undated	post-submission	version,	with	additional	corrections	in	red	font)	

Author:		Paolo	 Dini	 (UH),	 Egon	 Börger	 (UNI	 PASSAU),	 Eduard	 Hirsch,	 Thomas	 Heistracher	 (SUAS),	
Massimo	Cireddu,	Luca	Carboni,	Giuseppe	Littera	(SARDEX)	

Partners	contributed:		

Made	available	to:	Public	 	
		

Versioning	

Version	 Date	 Name,	organization	

1	 15/06/2017	 Paolo	Dini	(UH)	

2	 15/07/2017	 Egon	Börger	(UNI	PASSAU),	Massimo	Cireddu,	Luca	Carboni,	Giuseppe	
Littera	(SARDEX)	

3	 21/08/2017	 Egon	Börger	(UNI	PASSAU),	Eduard	Hirsch	(SUAS),	Massimo	Cireddu,	
Luca	Carboni,	Giuseppe	Littera	(SARDEX)	

4	 31/08/2017	 PAOLO	DINI	(UH),	EDUARD	HIRSCH	(SUAS),	LUCA	CARBONI,	MASSIMO	CIREDDU,	
GIUSEPPE	LITTERA	(SARDEX)	

5	 08/10/2017	 PAOLO	DINI	–	INTEGRATED	FINAL	COMMENTS	FROM	INTERNAL	REVIEW	

	

	 	

Internal	Reviewer:	 Chrystopher	Nehaniv	(UH)	

		
	
	
	
	
	
	
	

	
	

This work is licensed under a
Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License.
	
	

Abstract

This report describes the high-level requirements of the new decentralized transactional
platform for the Sardex mutual credit system. The effort has been divided into two parts:
first, the high-level functional requirements (business logic) are specified, modelled, verified, and
implemented in a production programming language; second, the same process is applied to the
backend infrastructure, which will be based on the most suitable blockchain technologies and
architecture based on the economic, financial, and governance framework that SARDEX is in
the process of defining. This report provides an initial overview of the architecture requirements
according to the arc42 method, and then provides a formalization of the specification and
modelling of the business logic using the Abstract State Machines method and the CoreASIM
framework for executable Abstract State Interaction Machine models.

Table of Contents

1 Introduction 5

2 High-Level Architectural Requirements and Documentation 7
2.1 About INTERLACE . 7
2.2 Introduction . 7

2.2.1 Goals . 7
2.2.2 Context and Previous Work . 8
2.2.3 Requirements Overview . 9
2.2.4 Quality Goals . 10
2.2.5 Stakeholders and their roles . 10

2.3 Solution Strategy . 11
2.3.1 Strategy Steps . 11

2.4 Risks and Technical Debts . 13
2.5 Glossary . 13

3 Functional Requirements and Business Logic 15
3.1 Core Payment Operations . 15

3.1.1 Signature elements of B2B Operations . 15
3.1.2 Behaviour for Credit Operations . 16
3.1.3 Behaviour for Debit Operations . 20

3.2 Account History and Balance Operations . 23
3.3 User Operations . 24

References 26

4

Chapter 1

Introduction

Paolo Dini and Giuseppe Littera

The INTERLACE project is developing a blockchain-based transactional platform for use by the
Sardex mutual credit system. Sardex S.p.A. (SARDEX) has been operating successfully an electronic,
B2B, zero-interest mutual credit system on the island of Sardinia since 2009. The Sardex system (also
known as Circuito di Credito Commerciale) challenges prevailing notions about the nature of money,
and the financial and economic autonomy that a relatively poor region can aspire to, because it enables
local economic actors (SMEs in particular) to trade with each other in a trustful and circular fashion
with a unique digital trade credit unit. It does this by monetizing the spare capacity of the local
economy in the form of mutual, and taxable, credit between participating companies, at zero interest,
on a strong basis of trust, solidarity, and local cultural identity [4, 3, 11]. The deeply innovative nature
of this system is to distribute to the circuit members the power to create credit money (sardex credits,
where 1 credit = 1 Euro), and thereby provide an alternative to credit money creation through bank
loans. However, the Sardex transactional platform is currently centralized,1 which challenges the long-
term scalability, sustainability, and governance of the system because the governance and management
of the circuit are all held by the central credit-clearing entity (SARDEX).

The specification and implementation of the new architecture are based on the Abstract State
Interaction Machines (ASIMs), developed and implemented in the platform CoreASIM by the
BIOMICS project2 [8, 7, 10] as extensions of Börger and Stärk’s [1] Abstract State Machines (ASMs)
and of the CoreASM environment.3 The ASIMs are based on realizing the BIOMICS mathematical
framework for Interaction Machines (IMs) that dynamically and recursively grow and change their
components and network topologies to deploy/reabsorb resources in response to interactions and
computational needs [5]. Relative to the ASMs, ASIMs are fully asynchronous, concurrent, and
communicating, so they can run on different servers and communicate over the network to validate
transactions. The ASIM approach is fundamentally important for SARDEX as a company because it
guarantees verifiability, validation, and efficient change management (to manage requirements creep as
well as new emerging functionalities) through rigorous mathematical formalization of the specification
at the level of requirements capture and a rigorous process of iterative refinement down to the level
of the code of choice. Any of these levels of abstraction is executable by an interpreter (built into
CoreASIM), so at each level of the refinement process the current implementation level can be verified
against requirements.

The number of new cryptocurrencies is increasing very rapidly,4 along with the variations in the
technologies that support them. This very volatile technology landscape is causing us to focus first on
the new economic and governance model for sardex.net, which will provide the high-level requirements
for the new blockchain architecture and will, therefore, enable us to narrow down the number of possible
frameworks and technologies to draw from. In the meantime, we have begun the non-trivial task of
migrating the current platform functionality towards the new model. The first step in this process has
been to begin formalizing the circuit’s business logic as ASM models.

1 Cyclos 4: http://www.cyclos.org/products/.
2 http://biomicsproject.eu/
3 Interaction Computing Execution Framework (ICEF) http://biomicsproject.eu/news/135-icef
4 As of 28/08/17 there were 865 currencies listed on https://coinmarketcap.com/, up from 851 a few days earlier.

http://www.cyclos.org/products/
http://biomicsproject.eu/
http://biomicsproject.eu/news/135-icef
https://coinmarketcap.com/

6 D2.1

This report is organized as follows. Chapter 2 provides a high-level view of the architecture and
its documentation following the arc42 method.5 Chapter 3 provides a first collection of functional
requirements of the system modelled as ASMs. These reflect the business logic of the current system.
This model will be instantiated in CoreASIM in order to execute it with a fictitious set of inputs and
verify its operation, after which it will be implemented in a language of choice (probably Java).

A second specification and modelling effort will follow, to reflect in the blockchain “backend” the
new governance and financial/economic model once it has been completed. This second model and its
implementation will be reported in the next architecture deliverable (D2.2) at Month 12.

5 http://arc42.org/

http://arc42.org/

Chapter 2

High-Level Architectural Requirements and Documentation

Paolo Dini, Eduard Hirsch, Giuseppe Littera, Luca Carboni, Massimo Cireddu, Thomas Heistracher

2.1 About INTERLACE

The objective of INTERLACE is to use the Abstract State Interaction Machines framework
(CoreASIM)6 open source output of the FP7 FET project BIOMICS7 to develop a decentralized
transactional and ledger architecture demonstrator for B2B mutual credit.

2.2 Introduction

2.2.1 Goals

Currently Sardex uses a payment platform which offers solid financial transaction facilities in support
of B2B trade. However, the architecture has been built using a monolithic centralized approach which
is not scalable as the system grows in size. In this context, the ‘system’ refers both to the 3500 users
in Sardinia as well as the approximately 3000 members across the other 11 circuits in the other Italian
regions and the 1500 individual users (members of the Business to Employee, B2E, programme). The
aim of the platform redesign is to move to a decentralized (within INTERLACE) and ultimately to
a completely distributed architecture which is able to scale far beyond the capacity of the current
implementation. Figure 2.1 shows the current and the first step in decentralization.

Cultural Layer

Social Layer

Circuit Governance Layer

Legal Framework (Contracts with members)

Economic/Business Sector Layer

Digital Transactional Layer

Digital Persistence Layer

Equity/Property Framework

Monetary/Mutual Credit Layer

Local, Regional and State Institutions and Normative Frameworks,
Internet, Utilities, Regional and Geographical Context

Centralized DistributedDecentralized

Architecture
Layer

Current
Future

Legend

Fig. 2.1: Sardex’s institutional architecture with current and future decentralization levels

It is too early to imagine what form the fully distributed architecture will take, especially since
blockchain technology is being innovated and is diversifying as different forks at incredible speed.

6 http://biomicsproject.eu/news/135-icef
7 http://biomicsproject.eu/

http://biomicsproject.eu/news/135-icef
http://biomicsproject.eu/

8 D2.1

Equally important is the principle according to which the technological architecture should be seen as
reflecting and responding to the requirements set by the economic, financial, and governance model,
and not the other way around. Since the economic, financial, and governance model is also evolving,
it is more important to work towards a tight coupling (e.g. a compiler) between a formal but agile
specification framework and the corresponding implementation than to have all the architectural
answers now.

As stated in the Introduction, we are using the ASM method [1] to develop executable models of the
functional requirements. These models will be implemented in the CoreASIM framework,8 where
they can be validated before implementing them in a production environment (e.g. in Java).

2.2.2 Context and Previous Work

The INTERLACE proposal describes a blockchain architecture based on the Open Transaction
protocol (OTX) [6] as an intermediate solution between fully centralized and distributed architectures.
OTX involves a pool of Auditor nodes to validate the transactions executed by each Notary node.
The initial conception of the INTERLACE architecture was to use only one central Notary, as a first
step from the current centralized server towards a more distributed architecture. For the persistence
layer we originally examined the Lightweight Cryptocurrency Ledger (LCL) [13] as an alternative to
the Bitcoin blockchain. The idea of LCL is to store minimal information on the current state of the
whole ledger in each block rather than requiring nodes to carry the whole history of block deltas
as the Bitcoin blockchain does. This approach achieves continuity with the existing solution while
also enabling scalability to multiple circuits (multiple Notaries) under the same mathematical and
computational framework.

Rather than replicating the functionality of Cyclos 4 in a decentralized or distributed manner by
implementing the OTX-LCL concepts from scratch, it makes sense to take advantage of the staggering
levels of investment currently being made in blockchain technologies by several banking and industry
consortia, especially since the best ones are open source, and build on existing frameworks. As of
April 2017, just before INTERLACE started, the two most likely candidates for our purposes were
IBM’s Hyperledger Fabric9[2] and Corda.10 Together, they can be described as bringing together the
principles of OTX and LCL with the smart contracts of Ethereum.11 However, an important difference
is that these blockchain implementations are permissioned, they are not open (permissionless) like the
Bitcoin or Ethereum blockchains. Although this suits the early decentralised implementation of the
INTERLACE blockchain, it opens up governance questions that are currently being examined by
SARDEX. First among these question is the possibility of establishing two separate legal entities:

Sardex S.p.A. (SARDEX) will maintain its current ownership structure.

A new non-profit legal entity, which we can refer to for now as Circuit Coop, or more loosely as
sardex.net, may be formed in the near future to begin devolving the ownership of the commons12

to the circuit members.

From a purely functional point of view, Hyperledger enables a given node to belong to multiple
blockchain networks. This is of interest to us because in the governance framework SARDEX is defining
at least two units to be stored on the blockchain are envisaged: SRD credits and a new meritocratic
reward points system called ‘Proximity’, implemented with tokens that are earned through altruistic
behaviour and dubbed ‘π’. Corda is interesting because it separates what Hyperledger calls ‘chaincode’,

8 http://biomicsproject.eu/news/135-icef
9 https://hyperledger-fabric.readthedocs.io/en/latest/

10 https://www.corda.net/
11 https://www.ethereum.org/
12 The Sardex circuit commons have not been defined yet, but they will constitute a new basis for shared ownership by

all the members. An example could be solar panels owned by the coop and providing renewable energy that can only
be bought with credits.

http://biomicsproject.eu/news/135-icef
https://hyperledger-fabric.readthedocs.io/en/latest/
https://www.corda.net/
https://www.ethereum.org/

INTERLACE Project (Grant no. 754494) 9

which implements the smart contracts, from the persistence layer. Thus, Corda comes with a ‘business
flow’ layer that provides greater flexibility to adapt to the great diversity of actors in the possible
future scenarios, e.g. partially overlapping networks involving trade, communications, and renewable
energy, and across different regions or even countries.

The functional requirements addressed in this report cover the core functionalities like credit and
debit operations but exclude and intentionally hide implementation details about how transactions
are actually processed on the backend servers. The reason is to divide the development work into
simpler stages rather than achieving the redesign of the full stack in one step. This is possible thanks
to CoreASIM acting as an interpreter of executable ASIM models, which can invoke interface object
to a simplified user interface and to the backend. In this manner the high-level specification and
requirements can be verified before the implementations of either the new front-end and backend are
performed.

2.2.3 Requirements Overview

The requirements have drifted over time due to two causes. First, the technology is changing very
quickly, so what we envisaged in terms of technologies at the time of the proposal writing is now
obsolete; second, the governance, economic, and financial model of Sardex is also evolving, so the
high-level requirements themselves have changed relative to a year ago. Therefore, the requirements
below will be instantiated in a specific development strategy to be detailed later in this chapter.

Req Description

R1 Needs a transaction layer and a persistence layer

R2 Both layers must be extensible and scalable to a (global) distributed architecture,
but must start decentralized in their initial (local) implementations

R3 Should be faster than Bitcoin, so a lightweight ledger (fragmented blockchain) approach is preferred

R4 Must be able to support intra-trade and inter-trade between multiple circuits. For example, the
different circuits could be:
• different Mutual Credit (MC) circuits (Sardex & Tibex)
• different types of networks (MC circuit and Renewable Energy (RE) network)

R5 If possible, reuse existing open source solutions and frameworks, within our own customized
ASM/ASIM framework

R6 Chain code (smart contracts code) should be separate from transaction layer for greater speed
and efficiency

R7 Inter-circuit operations must avoid falling under the European PSD2 Directive

R8 The Sardex blockchain should not have a native token: this is in order to separate unit of account
and medium of exchange from the operation of platform (i.e. no mining, as in Bitcoin) and avoid
seignorage (as in Ripple/XRP)

R9 Smart contracts code can be Turing-complete. The undecidability of Turing-complete languages does
not prevent the ability to prove specific properties of specific programs. In the ASM methodology,
provability is refined along with the specifications as part of the iterative refinement process,
down to the actual code.

R10 Support the needs of Industry, Academia, NGOs, non-profits, Social Movements

R11 Platform must involve the current regional MC systems and a reward and digital asset system called
Proximity and whose unit of account is called π

R12 Proximity involves a reward points system whereby πs are awarded to users on the basis of
behaviour that is beneficial for (their local) MC system. Gaining πs translates into the ability to
trade farther away from the user’s geographical location. Upon reaching a certain threshold,
the user is allowed to trade inter-circuit.

R13 The new platform architecture should be closed, i.e. ‘permissioned’, both for the regional networks
and for Proximity: Open (permissionless) DLT networks like Ripple/XRP could not prevent
external actors from speculating on Sardex digital assets like π. Private (permissioned) DLTs
like Chain Core/Ivy (compatible with PSD2) are preferred

Table 1: Summary of initial high-level requirements

10 D2.1

2.2.4 Quality Goals

The new system will need to separate different functions that are needed in a circuit, such as
transactions, search, ads, entities, and so forth, because they all have different service-level agreements
(SLAs). Therefore, a microservice architecture is the best approach.

In the current architecture definition process, it is also important to avoid dependencies on specific
technologies. This is because we are in the middle of a rather chaotic period of innovation in payment
technologies. This is over and above an even more intense period of innovation in the blockchain space,
so we are talking about two layers of very fast-moving technological innovations that we need to keep
abreast of. Thus, we must be clever in making the right choices and in leaving open the possibility for
changes in the technology we ourselves develop.

Open source is a great philosophy and it is responsible for an amazingly fast evolution in Information
Technology, but there is a cost. The success of an open source project depends in large part on
the ability of the project to enthuse potential contributors. Therefore, we must not forget that our
work must be attractive to other passionate developers. Also, great open source software has great
documentation. In summary, when we write code, we must act responsibly in using best practices,
stardards, and white papers. This help whoever wants to contribute at the start, and will ultimately
help everyone develop high-quality software.

The stakeholders listed in Section 2.2.5 need to be sure that the Sardex S.p.A. ledger application is
highly available and reliable in order to act as a proper mutual credit system. Here you will find a list
of quality goals for the architecture whose fulfilment is of highest importance to the stakeholders:

1. Highly decentralized architecture which can be developed to a fully distributed architecture.
2. Allow reliable transaction which are immutable and traceable.
3. High availability and operational as near real-time system.
4. Enforce high security standards.

2.2.5 Stakeholders and their roles

Common abbreviations for circuit stakeholders are:

B: Business
C: Consumer
E: Employee

Role/Name Contact Expectations

B2B Participating Companies Business-to-business transactions and interaction.
Find other Sardex members, advertise its business
inside the network, pay and receive credits from others
members, manage its accounts.

B2E Employees of Sardex member
companies

Receive a part of his salary in Sardex credits (for
example bonus, benefits, etc.). Find Sardex companies
where she can spend her credits. Manage her account.

B2C Generic Consumer Payments to Participating Companies. Find Sardex
companies partecipating in the B2C programme,
receive credits as cash-back for payments in Euros,
spend her credits, and manage her account.

Sardex-Admin Sardex S.p.A. Employee Configure and maintain the infrastructure. Support
members and different kinds of Sardex admins (i.e.
Brokers, Community Trade Advisors) with technical
issues. Help members collaborate and close deals.

INTERLACE Project (Grant no. 754494) 11

Role/Name Contact Expectations

Sardex-Manager Sardex S.p.A. Employee Run evaluations and manage the cooperation platform.
Monitor daily/monthly/yearly metrics of transactions,
members and monetary parameters.

2.3 Solution Strategy

The strategy of how to get from a monolithic working implementation to a decentralized and later a
fully distributed ledger application is broken down in several steps, as outlined below.

Since the original ASMs work only in their own scope, it is not possible to create a decentralized
or fully distributed environment with them. The solution for the INTERLACE project has been to
use a special extension of the ASMs named Abstract Interaction Machines (ASIMs) developed by the
BIOMICS project, and a corresponding runtime environment called Interaction Computing Execution
Framework (ICEF) 13. As explained on the ICEF webpage:

This framework extends the original CoreASM modelling and execution framework to enable the specification
and execution of distributed and concurrent ASMs. The ICEF was developed in the STREP project
BIOMICS which was financed by the European Commission in FP7 from October 1st, 2012 until March 31st,
2016. ICEF enables asynchronous execution of ASMs. It uses and enhances the CoreASM execution engine to
support communicating and interacting ASMs: CoreASIMs. Further, ICEF replaces ASM with BSL which offers
additional language primitives specifically designed to define the beahviour of biochemical systems. This code
introduces a restful API to control the BIOMICS wrapper (brapper) which can host several CoreASIM instances
and enables networked CoreASIM. It also introduces a manager which orchestrates several ASIMs to allow the
execution of interaction computing simulations.

Although the additional language primitives offered by ICEF might not be needed, the CoreASIM
implementation will be crucial for realizing the INTERLACE strategy.

2.3.1 Strategy Steps

The development strategy between now (M4) and the end of the project at M18 is as follows:

1. Define the functional requirements of the business logic using the ASMs formal description language (this
report).

2. Translate the formal description to a working demo environment using ICEF/CoreASIM.
3. Connect the business logic modelled with ASMs and implemented in CoreASIM to the real world. That

means use the interaction capabilities of the framework to connect it to the existing legacy application used
by SARDEX, Cyclos 4. This existing working architecture is summarized at a high level in Figure 2.2.

4. Test if the application and the translation to CoreASIM work.
5. Translate the CoreASIM implementation to a real-world application by creating e.g. a JAVA. application.
6. Develop a verification strategy and validate the implemented real-world application through component

testing.
7. Select appropriate blockchain technologies for the next-generation infrastructure.
8. Develop ASIM specifications that model the distributed environment.
9. Adapt ASIM interfaces.

10. Adapt the real-world version of the application to the new infrastructure.
11. Implement the new back-end logic using Open Source frameworks.
12. Test/Validate with real users the new application against the new back-end.

Several decentralized and distributed models with dynamic growing and adaptive hierarchical network
topologies from the BIOMICS project can be found in [5, 10] and proof-of-concept implementations
using ASIMs are described in [10, 12].

13 https://github.com/biomics/icef

https://github.com/biomics/icef

12 D2.1

AW
S-

H
os

te
d

3-
Ti

er
 C

yc
lo

s
4

Sy
st

em
 A

rc
hi

te
ct

ur
e

Le
ge

nd
:

AB
 =

 A
m

az
on

 B
uc

ke
t O

bj
ec

t B
ac

ku
p

St
or

ag
e

AC
L

=
Ac

ce
ss

 C
on

tro
l L

ist
AG

S
=

Am
az

on
 G

la
ci

er
 S

to
ra

ge
AM

I =
 A

m
az

on
 M

ac
hi

ne
 Im

ag
e

AW
S

=
Am

az
on

 W
eb

 S
er

vic
es

EI
P

=
El

as
tic

 IP
 A

dd
re

ss
RD

S
=

Am
az

on
 R

el
at

io
na

l D
at

ab
as

e
St

or
ag

e
R

=
Am

az
on

 R
ep

lic
a

DB
 B

ac
ku

p
VP

C
=

Vi
rtu

al
 P

riv
at

e
Cl

ou
d

R

AC
L

Se
cu

rit
yG

ro
up

Se
cu

rit
yG

ro
up

Au
to

Sc
al

in
g/

Se
lf-

He
al

in
g

G
ro

up

U
se

r
In

te
rfa

ce
Ba

ck
-

O
ffi

ce

RD
S

Po
st

gr
es

SQ
L

AC
L

Se
cu

rit
yG

ro
up

AC
L

Se
cu

rit
yG

ro
up

Au
to

Sc
al

in
g/

Se
lf-

He
al

in
g

G
ro

up

AC
L

Se
cu

rit
yG

ro
up

AC
L

Se
cu

rit
yG

ro
up

AC
L

Se
cu

rit
yG

ro
up

AC
L

Se
cu

rit
yG

ro
up

AC
L

Se
cu

rit
yG

ro
up

AC
L

Se
cu

rit
yG

ro
up

Se
cu

rit
yG

ro
up

Se
cu

rit
yG

ro
up

Au
to

Sc
al

in
g/

Se
lf-

He
al

in
g

G
ro

up

AB
Ro

le
AM

I
AG

S

AB
Ro

le

AM
I

AG
S

AB
Ro

le

AM
I

AG
S

EI
P

Ap
ac

he
 W

eb
 S

er
ve

r

Ro
ut

e
53

EI
P

Ro
ut

e
53

In
te
rn

et

VP
C

J2
EE

Ap
p

Se
rv

er

RD
S

Po
st

gr
es

SQ
L

F
ig

.2
.2

:
E

x
is

ti
n
g

3
-t

ie
r

C
y
c
lo

s
4

a
rc

h
it

e
c
tu

re
u
se

d
b
y

S
A

R
D

E
X

,
b
a
se

d
o
n

A
m

a
z
o
n

W
e
b

S
e
rv

ic
e
s,

a
n
d

sh
o
w

in
g

so
m

e
o
f

th
e

le
v
e
ls

o
f

re
d
u
n
d
a
n
c
y

INTERLACE Project (Grant no. 754494) 13

2.4 Risks and Technical Debts

The risks in the present development effort are mainly associated with the selection and adoption of
a suitable blockchain framework. The number of open source frameworks to choose from is large and
continues to grow. As the economic, financial, and governance framework converges to a stable model
that is approved and accepted by the main stakeholders of the Sardex circuit, we will need to choose a
suitable permissioned blockchain14 for the infrastructure, and at this point there is some uncertainty
as to which is the best choice.

Another risk comes from the fact that the INTERLACE project has a small budget and cannot fund
the whole development effort. Thus, a significant part of the work will need to be funded by SARDEX
directly and/or by its partners. This issue will become more pressing towards the end of the first year
of the project.

2.5 Glossary

Term Definition

Centralized Architecture that at a functional level has a central, single-owner server

Decentralized Centralized architecture where some of the control and/or is devolved to nodes other than
the central one

Distributed Architecture where the control and functionality are distributed equally to all the nodes

Blockchain Distributed ledger with different levels of replication depending on the variant

Permissioned
Blockchain

Blockchain that requires login credentials. While at the infrastructural level the
functionality is distributed onto multiple servers, the control is centralized

Permissionless
Blockchain

Original distributed architecture of the blockchain (e.g. Bitcoin, Ethereum, etc.)

Abstract State
Machines (ASMs)

Specification method that allows the definition of data structures that closely model the
domain of interest, at the most appropriate level of abstraction, and with the required
behaviour. Thus, the data structure concept includes also the definition of functions that
operate on an ASM’s data structure, thereby changing its state. Since ASMs are rigorously
defined and executable (interpretable) they can be used to define executable models that
can be used to verify the requirements and validate models. Conceptually, ASMs can be
thought of as analogous to finite-state machines, i.e. to a form of generalized automata. In
the most general and abstract terms, ASMs can be thought of as a method to develop a
customized programming language for a specific problem.

Abstract State
Interaction Machines
(ASIMs)

Extension of the ASM modelling framework to allow communication between different
ASMs. ASIMs are ASMs that are equipped with a general scheduling mechanism and an
interaction structure to distinguish between horizontal and hierarchical interaction, while
supporting dynamically changing adaptive network topology. They can therefore be used to
model an anynchronous, concurrent, distributed system with growing and changing
structure.

CoreASIM Extension of the CoreASM execution environment for ASMs.

Mutual Credit A type of currency that structurally highlights the nature of money as a social relation of
credit and debt. It is sometimes called ‘multilateral barter’, but this is not correct. While –
like all currencies – mutual credit does enable multilateral exchange, it does not preclude
profit margins, which are not easily quantified in barter. As credits perform the functions of
medium of exchange, unit of account, store of value (across time), and means of payment
(although they are not usually accepted for tax payments), they are a form of money.

SRD Sardex credits. SRD do not accrue interest on either positive or negative balances and are
not convertible with Euros.

14 Or similar, i.e. https://wordix.inesctec.pt/wp-lightkone/wp-content/uploads/2017/07/lightkone-intro.pdf

https://wordix.inesctec.pt/wp-lightkone/wp-content/uploads/2017/07/lightkone-intro.pdf

14 D2.1

Term Definition

ICEF Interaction Computing Execution Framework

OTX Open Transactions Protocol

LCL Lightweight Cryptocurrency Ledger

SLA Service-Level Agreement

Chapter 3

Functional Requirements and Business Logic

Egon Börger, Luca Carboni, Massimo Cireddu, Paolo Dini, Eduard Hirsch, Giuseppe Littera

We specify the core payment and related history operations of the INTERLACE network server,
which as a starting point reproduce those of the current Sardex system. We do this at the functional
requirements level of abstraction and in a component-based manner so that the resulting model
can serve as abstract description of the current implementation but also as starting point for a
new, blockchain-based implementation. Sect. 3.1 models two basic payment operations, Sect. 3.2
account history and balance operations, Sect. 3.3 user operations. Permission features and onboarding
operations will be modelled in the near future and reported on in the next deliverable (D2.2).

3.1 Core Payment Operations

In this section we describe the interaction of the INTERLACE network server with users. We consider
here only B2B operations, leaving the consideration of operations between a Company and either
Employees or Consumers for a later phase. Sect. 3.1.1 explains the basic data types, Sect. 3.1.2 the
credit and Sect. 3.1.3 the debit operation.

3.1.1 Signature elements of B2B Operations

The actors of B2B operations are companies (elements of the set Company) which interact with the
INTERLACE network server on a request/response basis using various communication devices from
whose technical details we abstract here. Therefore it becomes natural to describe the interaction of
companies with the INTERLACE network server by Send and Receive actions of communicating
Abstract State Machines (ASMs), the basic concept underlying Abstract State Interaction Machines
(ASIMs)15, one for each participating company and one for the INTERLACE network server.16 We
concentrate our attention in this section on modelling the actions the INTERLACE network server
performs when triggered by requests sent to it by any company of the circuit (which are treated in
Sec. 3.3).

We keep the communication mechanism abstract. Send(msg , to: a) denotes the operation of sending
the msg to agent a. Received(msg , from: s) is a predicate which is true when the message msg from
the sender s is in the mailbox of the receiver. Consume(msg) denotes the operation of deleting the
msg from the mailbox once it has been processed.

However, we should be aware that in modelling the Sardex transaction system communication takes
place at two levels:

15 ASIMs are communicating ASMs which are equipped with a general scheduling mechanism and an interaction
structure to distinguish between horizontal and hierarchical interaction as well as dynamic creation and reabsorption
of components. These features have been defined to satisfy the requirements of Interaction Computing formulated
in Deliverable 5.1 of the BIOMICS project [9]; these requirements have been shown to be satisfied by ASIMs (see
Ch. 2 of Deliverable D5.2 [10]). For further details (in particular on the definition of the communication network
structure, using channels and a routing component, and a resource manager by specialized communicating ASMs) and
the implementation see https://github.com/biomics/icef.

16 Observe that in a distributed version of the Sardex system different instances of the system are run by different agents
which all execute the same ASM program (or a program that has been obtained by adapting the basic program
appropriately for a particular instance). Cyclos today is loosely coupled in the sense that one can have multiple
applications running on multiple machines that share consistency with third-party utilities.

https://github.com/biomics/icef

16 D2.1

1. ‘from’ and ‘to’ as they apply to transfer operations between accounts

2. ‘from’ and ‘to’ as they apply to communications between ASIMs

Thus, for example, the following rule definition belongs to Level 1:

CreditPreviewReq((channel ; from; to; amount ; custFlds); mbr) = etc.

This is a rule that is invoked as part of an agent’s program. However, it could also be a part of a
Level-2 communication. In the ICEF the more abstract notation Send(msg , to: a) mentioned above
has been implemented as:

Send(((channel ; from; to; amount ; custFlds); mbr), to: TargetASIM , subject = “CreditPreviewReq”)

This Level-2 message is channelled through the Mailbox of the SourceASIM and arrives into the
Mailbox of the TargetASIM. The from:/to: notation does not describe a function and should be seen
as something closer to a comment. The level it refers to should be clear from the context. It is used
for the convenience of reading a rule where it only makes a parameter explicit that is used in the rule
and anyway assumed to be part of the message in question.

We usually assume each msg ∈ Message to contain besides its payload(msg) also the information
about its sender(msg) and receiver(msg). Thus the parameter from: c in Received(msg , from: c)
indicates that sender(msg) = c. Similarly, to: c in Send(msg , to: c) denotes that receiver(msg) = c.

The core payment operations are sent to the INTERLACE network server by companies c ∈ SardexNet
which are members of the net.17 Each such company may have a number of accounts18 which we
represent as elements of a set Account(c). Each account has a well-defined owner(acc) ∈ SardexNet
and is of some type accountType(acc) out of the set AccountType of possible account types:19

AccountType = {credit , domu, fee}
Account =

⋃
c∈SardexNet Account(c)

Therefore we name such accounts creditAccount(c), domuAccount(c), feeAccount(c) (names which are
defined if c has the corresponding accounts).

There are two principal transfer operations, called Credit and Debit operation specified in Sec. 3.1.2
and Sec. 3.1.3.

At this stage of the specification we have not yet addressed security issues. For example, sender(msg),
receiver(msg), or msg could be faked. Security will be addressed when we start specifying and
modelling the distributed transactional platform. Any implications to the business logic models
documented here will be examined at that time.

3.1.2 Behaviour for Credit Operations

A Credit operation is also called a push transfer. Its goal is to transfer an amount via a specific channel
from one account to another. Sardex uses a TransferType concept which allows one to impose on the

17 We use for the datatypes evocative names which suggest their intended interpretation.
18 A company can have at most an account for each account type.
19 A credit account is a normal account that can have a positive or negative credits balance. A domu account is designed

to allow the spending of credits for a mid/long-term investment – usually, but not always, to acquire buildings.
Therefore, it can reach a relatively large negative balance, within the limit permitted by the credit line of the account.
A fee account always has a positive credit balance, like a pre-paid card, and its balance is used to purchase one-
off services, fixed-fee subscription services, or to pay for fees associated with fee-based transactions paid for from a
different account (e.g. a credit account) held by the same user (although transactions between users belonging to the
same circuit do not incur a fee, inter-circuit transactions do).

INTERLACE Project (Grant no. 754494) 17

transfer operations certain conditions, including priorities. The parameters of a transfer type tt which
are relevant for the Sardex business logic are the following:20

the operation ∈ {credit , debit},
the channel ∈ {phone,website, pos}21 through which the interaction between the user and the
INTERLACE network server takes place,

the account type of the two involved accounts from, to ∈ Account ,

the groups of the two members involved: fromMbrGroup, toMbrGroup ∈ Group,

conditions on the to-be-transferred amount ,

conditions on so-called custom fields.

CustField is a set of typed variables, with or without parameters, in ASM terminology a set of 0-
ary or n-ary functions (with n > 0) whose values are of an indicated type. They serve to encode
customer information on the reason of a transfer, e.g. the number and date of the bill to be paid. For
each transfer type tt its custFields(tt) (if there are any) are of two kinds, compulsory or optional.
Optional fields do not affect the custFieldCond ition of a transfer type. For a transfer to Match a
transfer type tt means in particular that its custFieldCond(tt , custFields(transfer)) evaluates to true,
where custFields(transfer) denotes the values of the custom fields in the transfer . As a consequence
if a transfer type tt comes without or only with optional custom fields, then the custFieldCond with
tt as first argument is empty, i.e. simply true.

We retrieve for each parameter the corresponding information from a transfer type tt by an appropriate
function:

name : TransferType → Identifier
oper : TransferType → Operation
chan : TransferType → Channel
sourceType, destType : TransferType → Formula // expressions for conditions
fromMemberGroup, toMemberGroup : TransferType → Group
amountCond : TransferType → Formula
custFieldCond : TransferType×CustFields → Formula
where

Operation = {credit , debit}
Channel = {phone,website, pos}

Additional Note:
‘Formula’ in the expressions above is a Logic term. In Computer Science it is more often referred to as
‘Boolean-valued expression’. Hence ASM/ASIM formulas can take on (or return) True or False values.

One can imagine TransferType as a table where each row is named and contains the parameters of
the represented tt . The TransferType data type is defined in such a way as to guarantee the following
property:

Transfer Type Welldefinedness. For each transfer operation ∈ {credit , debit}, each pair of
accounts acc, acc′ and each channel there is at most one tt ∈ TransferType, i.e. at most one tt
which satisfies

oper(tt) = operation,

chan(tt) = channel ,

sourceType(tt) = accountType(acc),

destType(tt) = accountType(acc′).

We denote this unique tt as the value of the function tt(operation, acc, acc′, channel).22

20 The implementation in Cyclos has more parameters we do not consider here.
21 pos abbreviates “point of sale”.
22 Following common notation we use the same name tt for elements of TransferTable and for the function tt(params);

it will always be clear from the context which one is meant.

18 D2.1

Both payment operations Credit and Debit are instances of a request/response pattern with two phases,
a first phase whose action is called Preview – where only the permission for the transfer is checked
(using a transferTypeExstnCheck function) but not the requested amount – and a second phase whose
action is called Perform where also the amount is checked (using a balanceCheck function). On the user
side both actions are treated as stateless, on the INTERLACE network server side only the Preview
action is stateless. Here we make the – for the user stateless – two-phase interaction explicit by using
two types of user requests, say CreditPreviewReq and CreditPerformReq , with corresponding Sardex
rules CreditPreviewReq and CreditPerformReq to react to such requests. The user first sends a
CreditPreviewRequest and upon the positive system response the corresponding CreditPerformRequest.
The INTERLACE network server can execute at any moment any of its CreditTransferReq rules
whose execution depends only on the parameters with which they are called. But for one successful
credit request instance the two rules can be executed only in the indicated order, due to the intrinsic
sequentiality of the two steps for the request.

Remark. In the CreditTransferReq model we assume that its access to the two accounts from, to
is exclusive. This assumption plays the role of a constraint for the implementation and thus is an
essential part of the specification. We do not model the corresponding synchronization mechanism
(which guarantees the assumption) because its functionality is clear and it is well-known how to
program it.

CreditTransferReq((channel , from, to, amount),mbr) =
CreditPreviewReq((channel , from, to, amount),mbr)
CreditPerformReq((channel , from, to, amount),mbr)

We define the two core functions transferTypeExstnCheck and balanceCheck of CreditTransferReq
abstractly, to satisfy a modular design approach, as yielding either a positive answer – for
transferTypeExstnCheck (in this case by the Transfer Type Welldefinedness property stated above)
the matching type tt and for balanceCheck the answer OK – or some information on the reason why
the check did not succeed. Since there may be several reasons for a failure, in case of failure the
value of the two functions is a set of detected failure reasons, say elements of TransferTypeError
resp. BalanceViolation. Out of this set an ErrMsg can be constructed to provide the user with some
information why the check did not succeed, tailoring the format and payload of error messages. Below
we illustrate this modular approach to exception handling by some characteristic examples.

CreditPreviewReq((channel , from, to, amount , custFlds),mbr) =
if Received(CreditPreviewReq(credit , channel , from, to, amount , custFlds), from: mbr) then

let transfer = (credit , channel , from, to, amount , custFlds)
let ttResult = transferTypeExstnCheck(transfer)

if ttResult 6∈ TransferType then
Send(ErrMsg(NotPermitted(transfer , ttResult)), to: mbr)

else Send(YouMayProceedWith(transfer), to: mbr)
Consume(CreditPreviewReq(credit , channel , from, to, amount , custFlds), from: mbr)

where
// (Note that the following uses mathematical function notation)

transferTypeExstnCheck(transfer) ∈{
{tt} if tt ∈ TransferType and Match(tt , transfer)
PowerSet(TransferTypeError) else

Match(tt , transfer) if
oper(tt) = credit and chan(tt) = channel and
owner(from) ∈ fromMemberGroup(tt) and owner(to) ∈ toMemberGroup(tt) and
sourceType(tt) = accountType(from) and destType(tt) = accountType(to) and
custFieldCond(tt , custFlds(transfer)) = true

INTERLACE Project (Grant no. 754494) 19

Additional Notes:
The above rule should be seen as a specification of a rule, rather than as the implementation of a
derived function. Hence, there is no redundancy in the fact that the second line tests whether the
CreditPreviewRequest has been received.

ASM/ASIM functions are mathematical functions that can be discrete (i.e. ‘truth tables’), continuous,
static, or dynamic. ASM/ASIM ‘derived functions’ are called ‘subroutines’ or ‘procedures’ in some
programming languages.

‘∈ PowerSet(TransferTypeError)’ was used instead of ‘∈ TransferTypeError ’ because a transfer may
violate more than one condition of the Match. So a set of transfer type errors may be returned. If
there is a matching tt , then it is unique.

{tt} is a singleton set.

Implementation/refinement comment: the implementation of
Received(CreditPreviewReq(credit , channel , from, to, amount , custFlds), from: mbr)

requires refinement. It is of the form
Received(msg ; from : s),

where the message is
msg = CreditPreviewReq(credit , channel , from, to, amount , custFlds).

It is an element of the abstract set ‘Message’, of type ‘credit preview request’ whose content contains
values for parameters of type credit , channel , from, to, amount , custFlds. The implementation takes
the form

choose m in inboxOf (self) with getMessageSubject(m) = “CreditPreviewRequest ′′ do (etc.)

Specific error cases and their handlers will be defined later. Therefore, there is nothing about this in
the present spec.

The Match predicate is extended in Sec. 3.1.3 for the first transfer parameter debit (instead of credit).23

The set of possible TransferTypeErrors can be defined for the various cases of interest where the
Match(tt , transfer) condition is violated for whatever tt ∈ TransferType.

Since the network server when responding to a CreditPreviewRequest does not record the data (due to
the requirement of the stateless Preview response character), when elaborating a CreditPerformRequest
the system in a first step must redo the transferTypeExstnCheck . In the case of a positive check result,
as part of the transaction which is added to the Ledger , besides the transfer parameters also the
computed transfer type is recorded together with the transfer date (which is computed by the system
as value of a location, say today , when the credit request is performed). The function transaction
denotes the final transaction corresponding to the given transfer , its date and transfer type.

To formulate error conditions for the balanceCheck we need a function availBalance(acc) which yields
the amount of money that is currently available in the acc to be spent. It is defined together with the
related current balance function balance(acc) in Sect. 3.2. Receivable(amount , acc) checks whether the
destination of the transfer by receiving the amount would exceed its upper credit limit upperLimit(acc).

23 This is the reason why the definition here considers only the if case instead of stating iff .

20 D2.1

CreditPerformReq((channel , from, to, amount , custFlds),mbr) =
if Received(CreditPerformReq(credit , channel , from, to, amount , custFlds), from: mbr) then

let transfer = (credit , channel , from, to, amount , custFlds)
let ttResult = transferTypeExstnCheck(transfer)

if ttResult 6∈ TransferType then
Send(ErrMsg(NotPermitted(transfer , ttResult)), to: mbr)

else let bal = balanceCheck(from, to, amount)
if bal = OK

then
Append(transaction(transfer , ttResult , today),Ledger)
Send(Confirmed(transfer), to: mbr)

else Send(ErrMsg(transfer , bal), to: mbr)
Consume(CreditPerformReq(channel , from, to, amount , custFlds), from: mbr)

where
balanceCheck(from, to, amount) ∈ {OK} ∪ Powerset(BalanceViolation)
balanceCheck(from, to, amount) = OK iff amountCond(ttResult)(amount) = true and

availBalance(from) ≥ amount and Receivable(amount , to)
ViolatesAmountCond(amount) if amountCond(ttResult)(amount) = false
ViolatesLowerLimit(from, amount) if availBalance(from) < amount
ViolatesUpperLimit(to, amount) if not Receivable(amount , to)
Receivable(amt , acc) iff balance(acc) + amt ≤ upperLimit(acc)

Additional Note:
By definition amountCond(ttResult) is a formula. That formula contains a variable, say amt , which
denotes the to-be-checked amount . So amountCond(ttResult)(amount) is that formula with variable
amt replaced by the actual value amount . In logic this is also written more formally using ‘/’ for
substitution: amountCond(ttResult)(amount) = amountCond(ttResult)(amt/amount).

3.1.3 Behaviour for Debit Operations

In the Sardex business logic also a Debit transfer can be performed but only between accounts
of type credit (neither domu nor fee). Since any Sardex member c ∈ SardexNet can be owner
of at most one account of type credit , Debit transfers are formulated as being performed among
members creditor , debitor . The INTERLACE network server accepts a DebitPreviewRequest and
a DebitPerformRequest from a creditor , using two corresponding rules DebitPreviewReq and
DebitPerformReq that it uses to interact with the creditor . DebitPerformRequests are executed
using a request/response interaction between the system and the debitor . The debitor has to allow the
transfer by acknowledging a ConfirmationRequest that the INTERLACE network server sends out;
only when the debit transfer has been permitted by an acknowledgement from the debitor will the
INTERLACE network server execute the transfer using a third rule called DebitAckExecution.

The INTERLACE network server can execute at any moment any of these rules whose execution
depends only on the parameters with which they are called. But for one successful debit request
instance the three rules can be executed only in the indicated order, due to the intrinsic sequentiality
of the three steps for the request .

Remark. As for CreditTransferReq also in the DebitTransferReq model we assume that the
access to the two accounts from, to is exclusive (synchronization constraint).

DebitTransferReq =
DebitPreviewReq
DebitPerformReq
DebitAckExec

INTERLACE Project (Grant no. 754494) 21

Both rules DebitPreviewReq and DebitPerformReq in their first step make a transferTypeExstnCheck
for the account of type credit of the debitor , defined by extending the Match predicate for debit transfer
operations. This extension works for B2B operations; it also works for B2E but not for E2B or E2E. In
other words Employees are not allowed to request (i.e. appear as first argument of) a Debit transfer.

DebitPreviewReq((debitor , channel , amount , custFlds), creditor) =
if Received(DebitPreviewReq(debitor , channel , amount , custFlds), from: creditor) then

let from = creditAccount(creditor), to = creditAccount(debitor)
let transfer = (debit , channel , from, to, amount , custFlds)
let ttResult = transferTypeExstnCheck(transfer)

if ttResult 6∈ TransferType then
Send(ErrMsg(NotPermitted(transfer , ttResult)), to: creditor)

else Send(YouMayProceedWith(transfer), to: creditor)
Consume(DebitPreviewReq(debitor , channel , amount , custFlds), from: creditor)

where
Match(tt , transfer) if

oper(tt) = debit and chan(tt) = channel and
owner(from) ∈ fromMemberGroup(tt) and owner(to) ∈ toMemberGroup(tt) and
sourceType(tt) = accountType(from) and destType(tt) = accountType(to) and
custFieldCond(tt , custFlds) = true

If the transferTypeExstnCheck in a DebitPerformRequest succeeds, a two-phase request/response
interaction is started, this time with the system as requestor with the debitor to respond. More
precisely, upon receiving the DebitPerformRequest from the creditor , the system after a successful
transferTypeExstnCheck executes a balanceCheck , for which we can use the same abstract function as
for Credit operations but with interchanged source/destination parameters; in other words, the system
checks whether from the creditAccount(debitor) a corresponding Credit operation can be performed.
If this check succeeds the system inserts the transaction without further ado if the amount is small
(less than 100). Otherwise it creates a OneTimePassword otp, records its birthtime (the beginning of
its lifetime), records the otp with the transaction (including the computed transfer type) as pending
transaction and sends the otp with an agreement request to the debitor . It then waits for a confirmation.

DebitPerformReq((debitor , channel , amount , custFlds), creditor) =
if Received(DebitPerformReq(debitor , channel , amount , custFlds), from: creditor) then

let from = creditAccount(creditor), to = creditAccount(debitor)
let transfer = (debit , channel , from, to, amount , custFlds)
let ttResult = transferTypeExstnCheck(transfer)

if ttResult 6∈ TransferType then
Send(ErrMsg(NotPermitted(transfer , ttResult)), to: creditor)

else let bal = balanceCheck(to, from, amount) // check balance
if bal 6= ok then Send(ErrMsg(transfer , bal), to: creditor) else

if Small(amount)
then
Append(transaction(transfer , ttResult , today),Ledger)
Send(Confirmed(transfer , ttResult , today), to: creditor)
Send(Confirmed(transfer , ttResult , today), to: debitor)

else let otp =new (OneTimePassword)
birthTime(otp) := now // current system time
Insert((otp, transaction(transfer , ttResult)),PendingTransaction)
status((otp, transaction(transfer , ttResult))) := pending
Send(ConfirmationReq(amount , creditor , otp), to: debitor)

Consume(DebitPerformReq(debitor , channel , amount , custFlds), from: creditor)

22 D2.1

When the otp is acknowledged (i.e. resent) by the debitor within the lifetimeForOTPs forseen for one
time passwords, the system updates the transaction status from pending to performed and Appends
the transaction to the Ledger with the current date today . When the system is waiting for an otp
confirmation the debitor is expected to send, this member may instead try to make another Credit
transfer. In this case it could be that only one, Credit or Debit, is still possible due to the debitor ’s
account balance. For this reason, when the pending transaction is confirmed, the balanceCheck (but
not any more the transferTypeExstnCheck) is performed once more and only when it succeeds is the
transaction put into the Ledger . The one time password is deleted to avoid a later application of the
rule which has to be applied in case of an Expired(otp).

DebitAckExec =
if Received(DebitAckMsg(amount , creditor , otp), from: debitor)and not Expired(otp) then

if thereisno t ∈ PendingTransaction with fst(t) = otp24

then Send(ErrMsg(IncorrectOtpFor(amount , creditor)), to: debitor)
else

let t = ιt ′(t ′ = (otp, transf) | t ′ ∈ PendingTransaction)25

if status(t) = pending then
let from = creditAccount(debitor), to = creditAccount(creditor)
let bal = balanceCheck(from, to, amount)

if bal 6= ok then
Send(ErrMsg((transfer , bal), to: creditor)
Send(ErrMsg((transfer , bal), to: debitor)
else

status(t) := performed
Append((transf , today),Ledger)
Send(Confirmed(transf , today), to: creditor)
Send(Confirmed(transf , today), to: debitor)

Delete(otp,OneTimePassword)
Consume(DebitAckMsg(amount , creditor , otp), from: debitor)

where
Small(amount) iff amount < 100
Expired(otp) iff now − birthtime(otp) > lifetimeForOTPs

In case the debitor does not confirm the Debit request within the lifetime forseen for OTPs, the
INTERLACE network server will reject the DebitPerformReq (by changing its status to rejected) and
inform the creditor about it.

DebitRejectExec =
if otp ∈ OneTimePassword and Expired(otp) then

if thereisno t ∈ PendingTransaction with fst(t) = otp
then Send(ErrMsg(IncorrectOtpFor(amount , creditor)), to: debitor)
else

let t = ιt ′(t ′ = (otp, transf) | t ′ ∈ PendingTransaction)
if status(t) = pending then

status(t) := rejected
Send(ConfirmRejectMsg(Rejected(amount , creditor)), to: debitor)

Delete(otp,OneTimePassword)

Remark. Up to now request/response pattern time issues are not formulated in the model. Here this
concerns in particular the timeout mechanism for pending transactions.26

24 fst denotes the first element of a sequence, here of a pair (otp, t) of an otp and the corresponding pending transaction
t .

25 Hilbert’s ι-operator ιxP(x) denotes the unique x which satisfies property P .
26 I can add such a mechanism once the rules become sort of stable.

INTERLACE Project (Grant no. 754494) 23

3.2 Account History and Balance Operations

The INTERLACE system accepts from every business member c ∈ SardexNet an account history
request for any of its accounts, i.e. the elements of the set Account(c). As parameters of such a
request the member can indicate besides the account also the period ∈ Period for which the history is
requested, the counterparty (an element of the set CounterParty(c) of accounts allowed to be accessed
by the member for a transfer), and/or the amount range in the set AmountRange of allowed transfer
amounts, as well as some custom fields (elements of the set CustField).

As usual in the model the information requested by the parameters is retrieved by applying
corresponding functions to transactions. A history request is about transactions t in the Ledger ,
where the account appears as source(t) – the account from where the t-transfer has been made – or
as dest(t), the account where the t-transfer has been directed to; here source and dest indicate the
corresponding extraction functions applied to transactions, formally:

source : Transaction → Account
dest : Transaction → Account
date : Transaction → Time
amount : Transaction → Amount
customFields : Transaction → CustomFields
counterParty : Transaction x Account → PowerSet(SardexNet)
transferType : Transaction → TransferType

where
Amount = {n.xy | n ∈ Nat and 0 ≤ x , y ≤ 9}
CustomFields ⊆ CustField

For to-be-reported transactions date(t) must be within the indicated period . The counterParty(t , acc)
function extracts from a transaction t the owner of the other account involved in the transaction
and is applied in case the counterPty parameter is not All . The amount(t) is required to be in the
indicated amountRange. A CustFldMatch condition expresses the relation which is requested to hold
between the custField parameter and the custom fields extracted by the function customFields(t).

The INTERLACE network server answers an AccountHistReqest by sending back to the requestor
either an error message – in case the requestor is not a member of the circuit or the indicated account
is not one of its accounts – or the set T of transactions which satisfy the above-indicated properties.
This is specified by the following ASM rule.

AccountHistReq =
if Received(AccountHistReq(acc, period , counterPty , amountRange, custFld), from: c) then

if c 6∈ SardexNet or acc 6∈ Account(c)
then Send(ErrMsg(youHaveNoSuch(acc)), to: c)
else

let T = {t ∈ Ledger | (source(t) = acc or dest(t) = acc)
and date(t) ∈ period and amount(t) ∈ amountRange
and (if counterPty 6= All then counterParty(t , acc) ∈ counterPty)
and CustFldMatch(custFld , customField(t))} in
Send(T , to: c)

Consume(AccountHistReq(acc, period , counterPty , amountRange, custField))

In a similar way, one can specify the behaviour of the INTERLACE network server when it receives a
BalanceRequest, namely to compute the current balance of the requestor’s account. This computation
calculates the sum of the amounts of each received transfer and detracts from it the sum of the amounts
of each sent transfer.

24 D2.1

In addition, we foresee that, for performance and database management reasons, from time to time
the system issues a certifiedBalance. Therefore to calculate the current balance(acc), starting with
the last certifiedBalance of this account, only those transactions need to be considered whose date
is after the last balanceCertificationDate(acc), a dynamic location the system updates to the system
time now each time it updates the value of the location certifiedBal(acc). This is expressed by the
following ASM rule:

BalanceReq =
if Received(BalanceReq(acc)), from: mbr) then

if mbr 6∈ SardexNet or acc 6∈ Account(mbr)
then Send(ErrMsg(youHaveNoSuch(acc)), to: mbr)
else

let In = {t ∈ Ledger | dest(t) = acc and date(t) > balCertificationDate(acc)}
// case receive

let Out = {t ∈ Ledger | source(t) = acc and date(t) > balCertificationDate(acc)}
// case transfer

let bal =
∑

t∈In amount(t)−
∑

t∈Out amount(t) + certifiedBal(acc)
let NoOfTransactions =| In | + | Out |)

Send((bal ,NoOfTransactions, to: mbr)
Consume(BalanceReq(acc))

Having the balance, one can compute the availBalance (the spendable amount) by adding the value
of the creditLine:

availBalance(acc) = balance(acc) + creditLine(acc)

availBalance is an example of a derived function, i.e. a dynamic function with a fixed computation
scheme (here an equation). creditLine(acc) is a monitored function for members, it is a controlled
function for the agent (typically a broker) who has the right to set it.

3.3 User Operations

Users can Send requests which appear as input for the INTERLACE network server. To
Send(CreditPreviewReq(transfer)) or to Send(DebitPreviewReq(transfer)) is conditioned only by a
correct definition of the transfer parameter, definition the user supplies by filling in the corresponding
fields on the screen. The same holds mutatis mutandis for Send(AccountHistReq(histParams)) and
Send(BalanceReq(acc)). The functionality is clear so that we do not model further this editing process.

For Credit/Debit Perform requests the only relevant additional constraint is that they can be sent
only after an ok-message for the corresponding Preview request has been received. We use a function
kind to extract from a transfer parameter its credit resp. debit component.27

if Received(YouMayProceedWith(transfer), from: sardex) then
if kind(transfer) = credit then

Send(CreditPerformReq(transfer), to: sardex)
if kind(transfer) = debit then
Send(DebitPerformReq(transfer), to: sardex)

Consume(YouMayProceedWith(transfer))

27 In the following ASMs the keyword ‘sardex’ stands for ‘INTERLACE network server’.

INTERLACE Project (Grant no. 754494) 25

In case of a Debit operation a debitor has to confirm a received debit request by Sending a
DebitAckMsg ; otherwise a DebitRejectMsg is sent to the INTERLACE network server.

if Received(ConfirmationReq(amount , creditor , otp), from: sardex) then
if Agreed(amount , creditor , otp)

then Send(DebitAckMsg(amount , creditor , otp), to: sardex)
else Send(DebitRejectMsg(amount , creditor , otp), to: sardex)

Consume(ConfirmationReq(amount , creditor , otp))

References

1. E Börger and R Stärk. Abstract State Machines: A Method for High-Level System Design and Analysis. Springer-
Verlag, 2003.

2. C Cachin. Architecture of the Hyperledger Blockchain Fabric, 2016. IBM Research zürich, https://www.zurich.
ibm.com/dccl/papers/cachin_dccl.pdf.

3. P Dini, W Motta-Guarneros, and L Sartori. Self-Funded Social Impact Investment: An Interdisciplinary Analysis
of the Sardex Mutual Credit System. In 8th Social Innovation Research Conference, ISIRC 2016, Glasgow, 5-7
September, 2016. http://eprints.lse.ac.uk/67622/.

4. G Littera, L Sartori, P Dini, and P Antoniadis. From an Idea to a Scalable Working Model: Merging Economic
Benefits with Social Value in Sardex. International Journal of Community Currency Research, 21:6–21, 2017. https:
//ijccr.files.wordpress.com/2017/02/littera-et-al.pdf.

5. C L Nehaniv, J L Rhodes, A Egri-Nagy, P Dini, E M Rothstein, G Horváth, F Karimi, D Schreckling, and M J
Schilstra. Symmetry structure in discrete models of biochemical systems: natural subsystems and the weak control
hierarchy in a new model of computation driven by interactions. Philosophical Transactions of the Royal Society A,
373, 2015. http://rsta.royalsocietypublishing.org/content/373/2046/20140223.

6. C Odom. Open-Transactions: Secure Contracts between Untrusted Parties. NY. No year given. http://www.

opentransactions.org/open-transactions.pdf.
7. E Rothstein and D Schreckling. D4.2: Human-readable, Behaviour-based Interaction ComputingSpecification Lan-

guage. BIOMICS Deliverable, European Commission, 2015. URL: http://biomicsproject.eu/file-repository/
category/11-public-files-deliverables.

8. E Rothstein, D Schreckling, and C L Nehaniv. D4.1: Candidate for a (Co)algebraic Interaction Computing
Specification Language. BIOMICS Deliverable, European Commission, 2015. URL: http://biomicsproject.eu/
file-repository/category/11-public-files-deliverables.

9. E Rothstein Morris, P Dini, F Ruzsnavszky, D Schreckling, L Li, A J Munro, and E Börger. D5.1: Requirements
Collection for an Interaction Computing Execution Environment. BIOMICS deliverable, European Commission,
2015. URL: http://www.biomicsproject.eu.

10. E Rothstein Morris and D Schreckling. D5.2: Execution Framework for Interaction Computing. BIOMICS deliverable,
European Commission, 2016. URL: http://www.biomicsproject.eu.

11. L Sartori and P Dini. Sardex, from complementary currency to institution. A micro-macro case study. Stato e
Mercato, 107:273–304, 2016.

12. D Schreckling, E Rothstein Morris, and C L Nehaniv. LIFE: Load Balancing Inspired by Filament Structures. In
Proceedings 3rd BIOMICS Workshop: 8-10th February, University of Passau, Germany, pp 177-186, 2016.

13. B White. A Theory for Lightweight Cryptocurrency Ledgers. 2015. http://qeditas.org/lightcrypto.pdf.

https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
http://eprints.lse.ac.uk/67622/
https://ijccr.files.wordpress.com/2017/02/littera-et-al.pdf
https://ijccr.files.wordpress.com/2017/02/littera-et-al.pdf
http://rsta.royalsocietypublishing.org/content/373/2046/20140223
http://www.opentransactions.org/open-transactions.pdf
http://www.opentransactions.org/open-transactions.pdf
http://biomicsproject.eu/file-repository/category/11-public-files-deliverables
http://biomicsproject.eu/file-repository/category/11-public-files-deliverables
http://biomicsproject.eu/file-repository/category/11-public-files-deliverables
http://biomicsproject.eu/file-repository/category/11-public-files-deliverables
http://www.biomicsproject.eu
http://www.biomicsproject.eu
http://qeditas.org/lightcrypto.pdf

	Introduction
	High-Level Architectural Requirements and Documentation
	About INTERLACE
	Introduction
	Goals
	Context and Previous Work
	Requirements Overview
	Quality Goals
	Stakeholders and their roles

	Solution Strategy
	Strategy Steps

	Risks and Technical Debts
	Glossary

	Functional Requirements and Business Logic
	Core Payment Operations
	Signature elements of B2B Operations
	Behaviour for Credit Operations
	Behaviour for Debit Operations

	Account History and Balance Operations
	User Operations

	References

